com.intel.analytics.bigdl.nn.HardShrink.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.{DenseTensorApply, Tensor, TensorFunc6}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* This is a transfer layer which applies the hard shrinkage function
* element-wise to the input Tensor. The parameter lambda is set to 0.5
* by default
* ⎧ x, if x > lambda
* f(x) = ⎨ x, if x < -lambda
* ⎩ 0, otherwise
*
* @param lambda: a threshold value whose default value is 0.5
*/
@SerialVersionUID( 3551967457354343585L)
class HardShrink[T: ClassTag](private val lambda: Double = 0.5)
(implicit ev: TensorNumeric[T])
extends TensorModule[T] {
private val lam = ev.fromType[Double](lambda)
override def updateOutput(input: Tensor[T]): Tensor[T] = {
output.resizeAs(input)
output.map(input, (out, in) => {
if (ev.isGreater(in, lam) || ev.isGreater(ev.negative(lam), in)) {
in
} else {
ev.fromType[Int](0)
}
})
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
require(input.isSameSizeAs(gradOutput),
"Input should have the same size as gradOutput" +
s"input size(${input.dim()}) gradOutput size(${gradOutput.dim()})")
gradInput.resizeAs(input)
val func = new TensorFunc6[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T],
offset2: Int, data3: Array[T], offset3: Int): Unit = {
if (ev.isGreater(data3(offset3), lam)
|| ev.isGreater(ev.negative(lam), data3(offset3))) {
data1(offset1) = data2(offset2)
} else {
data1(offset1) = ev.fromType[Double](0)
}
}
}
DenseTensorApply.apply3[T](gradInput, gradOutput, input, func)
gradInput
}
}
object HardShrink {
def apply[@specialized(Float, Double) T: ClassTag](
lambda: Double = 0.5)(implicit ev: TensorNumeric[T]) : HardShrink[T] = {
new HardShrink[T](lambda)
}
}