com.intel.analytics.bigdl.nn.L1Penalty.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* adds an L1 penalty to an input (for sparsity).
* L1Penalty is an inline module that in its forward propagation copies the input Tensor
* directly to the output, and computes an L1 loss of the latent state (input) and stores
* it in the module's loss field. During backward propagation: gradInput = gradOutput + gradLoss.
*
* @param l1weight
* @param sizeAverage
* @param provideOutput
*/
@SerialVersionUID(- 6261350003722613506L)
class L1Penalty[T: ClassTag]
(val l1weight: Int, val sizeAverage: Boolean = false,
val provideOutput: Boolean = true)
(implicit ev: TensorNumeric[T]) extends TensorModule[T] {
var loss: T = ev.fromType(0)
override def updateOutput(input: Tensor[T]): Tensor[T] = {
var m: Double = l1weight
if (sizeAverage) m = m / input.nElement()
loss = ev.times(ev.fromType(m), input.norm(1))
output = input
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
var m: Double = l1weight
if (sizeAverage) m = m / input.nElement()
gradInput.resizeAs(input).copy(input).sign().mul(ev.fromType(m))
if (provideOutput) gradInput.add(gradOutput)
gradInput
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[L1Penalty[T]]
override def equals(other: Any): Boolean = other match {
case that: L1Penalty[T] =>
super.equals(that) &&
(that canEqual this) &&
l1weight == that.l1weight &&
sizeAverage == that.sizeAverage &&
provideOutput == that.provideOutput
case _ => false
}
override def hashCode(): Int = {
def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
val state = Seq(super.hashCode(), l1weight, sizeAverage, provideOutput)
state.map(getHashCode).foldLeft(0)((a, b) => 37 * a + b)
}
override def toString(): String = {
s"${getPrintName}($l1weight, $sizeAverage, $provideOutput)"
}
}
object L1Penalty {
def apply[@specialized(Float, Double) T: ClassTag](
l1weight: Int,
sizeAverage: Boolean = false,
provideOutput: Boolean = true)(implicit ev: TensorNumeric[T]) : L1Penalty[T] = {
new L1Penalty[T](l1weight, sizeAverage, provideOutput)
}
}