Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import com.intel.analytics.bigdl.utils.serializer._
import com.intel.analytics.bigdl.utils.serializer.converters.DataConverter
import com.intel.analytics.bigdl.serialization.Bigdl.{AttrValue, BigDLModule}
import scala.reflect.ClassTag
/**
* Performs a torch.MaskedSelect on a Tensor. The mask is supplied as a tabular argument
* with the input on the forward and backward passes.
*/
@SerialVersionUID(8596309896021196822L)
class MaskedSelect[T: ClassTag]
(implicit ev: TensorNumeric[T]) extends AbstractModule[Table, Tensor[T], T]{
private val maskIndices = Tensor[T]()
private val maskIndexBuffer = Tensor[T]()
private val gradBuffer = Tensor[T]()
private val gradMask = Tensor[T]()
override def updateOutput(input: Table): Tensor[T] = {
val inputTensor = input[Tensor[T]](1)
val mask = input[Tensor[T]](2)
if (ev.toType[Double](mask.sum()) > 0) inputTensor.maskedSelect(mask, output)
output
}
override def updateGradInput(input: Table, gradOutput: Tensor[T]): Table = {
val inputTensor = input[Tensor[T]](1)
val mask = input[Tensor[T]](2)
// ignore CudaTensor
maskIndexBuffer.range(1, mask.nElement())
maskIndexBuffer.resizeAs(mask)
if (ev.toType[Double](mask.sum()) > 0) maskIndexBuffer.maskedSelect(mask, maskIndices)
gradBuffer.resize(inputTensor.nElement()).zero()
gradBuffer.scatter(1, maskIndices, gradOutput)
gradBuffer.resizeAs(inputTensor)
gradInput.insert(1, gradBuffer)
gradInput.insert(2, gradMask.resizeAs(mask).zero())
gradInput
}
override def clearState() : this.type = {
super.clearState()
maskIndices.set()
maskIndexBuffer.set()
gradBuffer.set()
gradMask.set()
this
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[MaskedSelect[T]]
override def equals(other: Any): Boolean = other match {
case that: MaskedSelect[T] =>
super.equals(that) &&
(that canEqual this)
case _ => false
}
override def hashCode(): Int = {
def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
val state = Seq(super.hashCode())
state.map(getHashCode).foldLeft(0)((a, b) => 31 * a + b)
}
}
object MaskedSelect extends ModuleSerializable {
def apply[@specialized(Float, Double) T: ClassTag]()
(implicit ev: TensorNumeric[T]) : MaskedSelect[T] = {
new MaskedSelect[T]()
}
override def doLoadModule[T: ClassTag](context: DeserializeContext)
(implicit ev: TensorNumeric[T]) : AbstractModule[Activity, Activity, T] = {
val maskedSelect = super.doLoadModule(context).asInstanceOf[MaskedSelect[T]]
val modelAttributes = context.bigdlModule.getAttrMap
val maskIndices = modelAttributes.get("maskIndices")
val maskIndicesValue = DataConverter.getAttributeValue(context, maskIndices)
.asInstanceOf[Tensor[T]]
maskedSelect.maskIndices.resizeAs(maskIndicesValue).copy(maskIndicesValue)
val maskIndexBuffer = modelAttributes.get("maskIndexBuffer")
val maskIndexBufferValue = DataConverter.getAttributeValue(context, maskIndexBuffer)
.asInstanceOf[Tensor[T]]
maskedSelect.maskIndexBuffer.resizeAs(maskIndexBufferValue).copy(maskIndexBufferValue)
val gradBufferBuffer = modelAttributes.get("gradBuffer")
val gradBufferValue = DataConverter.getAttributeValue(context, gradBufferBuffer)
.asInstanceOf[Tensor[T]]
maskedSelect.gradBuffer.resizeAs(gradBufferValue).copy(gradBufferValue)
val gradMaskBuffer = modelAttributes.get("gradMask")
val gradMaskValue = DataConverter.getAttributeValue(context, gradMaskBuffer)
.asInstanceOf[Tensor[T]]
maskedSelect.gradMask.resizeAs(gradMaskValue).copy(gradMaskValue)
maskedSelect
}
override def doSerializeModule[T: ClassTag](context: SerializeContext[T],
maskedSelectBuilder : BigDLModule.Builder)
(implicit ev: TensorNumeric[T]) : Unit = {
val masKSelect = context.moduleData.module.asInstanceOf[MaskedSelect[T]]
val maskIndicesBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, maskIndicesBuilder, masKSelect.maskIndices,
ModuleSerializer.tensorType)
maskedSelectBuilder.putAttr("maskIndices", maskIndicesBuilder.build)
val maskIndexBufferBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, maskIndexBufferBuilder, masKSelect.maskIndexBuffer,
ModuleSerializer.tensorType)
maskedSelectBuilder.putAttr("maskIndexBuffer", maskIndexBufferBuilder.build)
val gradBufferBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, gradBufferBuilder, masKSelect.gradBuffer,
ModuleSerializer.tensorType)
maskedSelectBuilder.putAttr("gradBuffer", gradBufferBuilder.build)
val gradMaskBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, gradMaskBuilder, masKSelect.gradMask,
ModuleSerializer.tensorType)
maskedSelectBuilder.putAttr("gradMask", gradMaskBuilder.build)
}
}