com.intel.analytics.bigdl.nn.Negative.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, TensorModule}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.{NumericWildCard, TensorNumeric}
import scala.reflect.ClassTag
/**
* Computing negative value of each element of input tensor
* @param inplace output tensor reuse input tensor storage, default is false
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now
*/
class Negative[T: ClassTag](inplace : Boolean = false)
(implicit ev: TensorNumeric[T]) extends AbstractModule[Tensor[_], Tensor[_], T] {
override def updateOutput(input: Tensor[_]): Tensor[_] = {
if (inplace) {
output = input
} else {
if (output.getType() != input.getType()) {
output = input.emptyInstance()
}
output.resizeAs(input)
}
output.asInstanceOf[Tensor[NumericWildCard]]
.negative(input.asInstanceOf[Tensor[NumericWildCard]])
}
override def updateGradInput(input: Tensor[_], gradOutput: Tensor[_]): Tensor[_] = {
if (inplace) {
gradInput = gradOutput
} else {
if (gradInput.getType() != gradOutput.getType()) {
gradInput = gradOutput.emptyInstance()
}
gradInput.resizeAs(gradOutput)
}
gradInput.asInstanceOf[Tensor[NumericWildCard]]
.negative(gradOutput.asInstanceOf[Tensor[NumericWildCard]])
}
}
object Negative {
def apply[T: ClassTag](inplace: Boolean = false)
(implicit ev: TensorNumeric[T]): Negative[T] = new Negative[T](inplace)
}