com.intel.analytics.bigdl.nn.Squeeze.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, TensorModule}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.{NumericWildcard, TensorNumeric}
import scala.reflect.ClassTag
/**
* Delete all singleton dimensions or a specific singleton dimension.
*
* @param dims Optional. If this dimension is singleton dimension, it will be deleted.
* The first index starts from 1. Default: delete all dimensions.
* @param batchMode Optional. If the input is batch. Default is false.
*/
@SerialVersionUID(7998127436291978408L)
class Squeeze[T: ClassTag](
val dims : Array[Int] = null, val batchMode: Boolean = false
)(implicit ev: TensorNumeric[T]) extends AbstractModule[Tensor[_], Tensor[_], T] {
val dimensions = if (batchMode && dims != null) {
val newDims = new Array[Int](dims.length)
var i = 0
while(i < newDims.length) {
newDims(i) = dims(i) + 1
i += 1
}
newDims
} else {
dims
}
override def updateOutput(input: Tensor[_]): Tensor[_] = {
if (output.getType() != input.getType()) {
output = input.emptyInstance()
}
output.asInstanceOf[Tensor[NumericWildcard]].set(input.asInstanceOf[Tensor[NumericWildcard]])
if (dimensions != null) {
var i = 0
while(i < dimensions.length) {
output.squeeze(dimensions(i))
i += 1
}
} else {
output.squeeze()
}
if (batchMode && dimensions == null && input.size(1) == 1) {
output.addSingletonDimension()
}
output
}
override def updateGradInput(input: Tensor[_], gradOutput: Tensor[_]): Tensor[_] = {
if (gradInput.getType() != gradOutput.getType()) {
gradInput = gradOutput.emptyInstance()
}
require(input.nElement() == gradOutput.nElement(),
"input and gradoutput shoule be of the same size" +
s"input size ${input.nElement()} gradoutput size ${gradOutput.nElement()}")
gradInput.asInstanceOf[Tensor[NumericWildcard]]
.set(gradOutput.asInstanceOf[Tensor[NumericWildcard]].view(input.size()))
gradInput
}
override def toString(): String = {
s"${getPrintName}(${if (dimensions != null) dimensions.mkString(",") + ", " else ""}" +
s"${if (batchMode) "batch" else ""})"
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[Squeeze[T]]
override def equals(other: Any): Boolean = other match {
case that: Squeeze[T] =>
super.equals(that) &&
(that canEqual this) &&
(dims.zip(that.dimensions).map(a => a._1 == a._2).reduce(_ && _)) &&
batchMode == that.batchMode
case _ => false
}
override def hashCode(): Int = {
val state = Seq(super.hashCode(), dimensions, batchMode)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
}
object Squeeze {
def apply[T: ClassTag](dim : Int = Int.MinValue,
numInputDims: Int = Int.MinValue)(implicit ev: TensorNumeric[T])
: Squeeze[T] = {
new Squeeze[T](Array(dim), numInputDims != Int.MinValue)
}
def apply[T: ClassTag](
dims : Array[Int], batchMode: Boolean)(implicit ev: TensorNumeric[T])
: Squeeze[T] = {
new Squeeze[T](if (dims != null) dims.sortWith(_>_) else null, batchMode)
}
}