com.intel.analytics.bigdl.nn.Unsqueeze.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.{NumericWildcard, TensorNumeric}
import com.intel.analytics.bigdl.tensor._
import scala.reflect.ClassTag
/**
* Insert singleton dim (i.e., dimension 1) at position pos. For an input with dim = input.dim(),
* there are dim + 1 possible positions to insert the singleton dimension.
*
* @param pos The position will be insert singleton.
* @param numInputDims Optional. If in a batch model, set to the inputDims.
*/
@SerialVersionUID(- 5180889605872472241L)
class Unsqueeze[T: ClassTag](
val pos: Int,
var numInputDims: Int = Int.MinValue
)(implicit ev: TensorNumeric[T]) extends AbstractModule[Tensor[_], Tensor[_], T] {
def setNumInputDims(numInputDims: Int): Unit = {
this.numInputDims = numInputDims
}
private def getActualPosition(input: Tensor[_]) : Int = {
val dim = if (pos <= 0) {
input.dim() + pos + 1
} else {
pos
}
// get valid dimension offset for batchMode (if any)
val inputDim = input.dim() // data batch dim
numInputDims = if (numInputDims != Int.MinValue) numInputDims else inputDim // feature map dim
val offsetDim = inputDim - numInputDims
require(offsetDim >= 0, "input feature map dim (numInputDims) must be <= input:dim()," +
s" input feature map dim ${numInputDims}, inputdim ${inputDim}")
// the actual position; clearer error message for batchMode (if any)
val actualPos = dim + offsetDim
require(actualPos >= 1 && actualPos <= (inputDim + 1), s"Invalid position: $pos. " +
s"input:dim() is $input, input feature map dim (numInputDims) is $numInputDims.")
actualPos
}
override def updateOutput(input: Tensor[_]): Tensor[_] = {
val actualPos = getActualPosition(input)
if (input.getType() != output.getType()) {
output = input.emptyInstance()
}
output
.asInstanceOf[Tensor[NumericWildcard]]
.addSingletonDimension(input.asInstanceOf[Tensor[NumericWildcard]], actualPos)
output
}
override def updateGradInput(input: Tensor[_], gradOutput: Tensor[_]): Tensor[_] = {
require(input.nElement() == gradOutput.nElement(),
"input and gradOutput should be of the same size" +
s"input size ${input.nElement()} gradOutput size ${gradOutput.nElement()}")
gradInput = gradOutput.view(input.size())
gradInput
}
override def toString(): String = {
s"${getPrintName}($pos${if (numInputDims != Int.MinValue) ", " + numInputDims else ""})"
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[Unsqueeze[T]]
override def equals(other: Any): Boolean = other match {
case that: Unsqueeze[T] =>
super.equals(that) &&
(that canEqual this) &&
pos == that.pos &&
numInputDims == that.numInputDims
case _ => false
}
override def hashCode(): Int = {
val state = Seq(super.hashCode(), pos, numInputDims)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
}
object Unsqueeze {
def apply[@specialized(Float, Double) T: ClassTag](
pos: Int,
numInputDims: Int = Int.MinValue)(implicit ev: TensorNumeric[T]) : Unsqueeze[T] = {
new Unsqueeze[T](pos, numInputDims)
}
}