Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.ops
import com.intel.analytics.bigdl.tensor.{DenseTensorApply, DoubleType, FloatType, Tensor}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import java.util.Arrays.binarySearch
import scala.reflect.ClassTag
/**
* BucketizedCol operation represents discretized dense input.
*
* The Operation can handle single or multi feature column,
* as long as the boundaries is same between feature columns.
*
* Buckets include the left boundary, and exclude the right boundary.
* Namely, boundaries=Array(0, 1, 10) generates buckets (-inf,0),[0,1),[1,10),[10,+inf)
*
* For example, boundaries = Array(0, 10, 100) and input tensor is an 2D 3x2 DenseTensor:
* -1, 1
* 101, 10
* 5, 100
*
* the output tensor should be an 2D 3x2 DenseTensor
* 0, 1
* 3, 2
* 1, 3
*
* @param boundaries The bound Array of each bucket.
* @tparam T Numeric type. Parameter tensor numeric type. Only support float/double now
*/
class BucketizedCol[T: ClassTag](
private val boundaries: Array[Double])(implicit ev: TensorNumeric[T])
extends Operation[Tensor[T], Tensor[Int], T] {
require(boundaries.length >= 1,
"the length of boundaries must be more than or equal to 1")
private val boundariesImpl = boundaries.map(ev.fromType[Double])
output = Tensor[Int]()
override def updateOutput(input: Tensor[T]): Tensor[Int] = {
val resTensor = Tensor[Int](input.size())
ev.getType() match {
case FloatType =>
resTensor.applyFun[Float](
input.asInstanceOf[Tensor[Float]],
x => math.abs(binarySearch(boundariesImpl.asInstanceOf[Array[Float]], x) + 1))
case DoubleType =>
resTensor.applyFun[Double](
input.asInstanceOf[Tensor[Double]],
x => math.abs(binarySearch(boundariesImpl.asInstanceOf[Array[Double]], x) + 1))
case _ =>
throw new RuntimeException("Unsupported tensor type")
}
output = resTensor
output
}
}
object BucketizedCol {
def apply[T: ClassTag](
boundaries: Array[Double])
(implicit ev: TensorNumeric[T]): BucketizedCol[T]
= new BucketizedCol[T](
boundaries = boundaries
)
}