Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.ops
import com.intel.analytics.bigdl.tensor.{SparseType, Tensor}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* Indicator operation represents multi-hot representation of given Tensor.
*
* The Input Tensor should be a 2-D Sparse Tensor.
* And used to transform the output tensor of CategoricalCol* ops.
*
* The output tensor should be a DenseTensor with shape (batch, feaLen).
*
* For example, A input SparseTensor as follows:
* indices(0) = Array(0, 0, 1, 2, 2)
* indices(1) = Array(0, 3, 1, 1, 2)
* values = Array(1, 2, 2, 3, 3)
* shape = Array(3, 4)
*
* the output tensor should be an 2D 3x4 DenseTensor with isCount = true
* 0.0, 1.0, 1.0, 0.0
* 0.0, 0.0, 1.0, 0.0
* 0.0, 0.0, 0.0, 2.0
*
* @param feaLen The length of feature.
* @param isCount whether count the times of same value, default: true.
* @tparam T Numeric type. Parameter tensor numeric type. Only support float/double now
*/
class IndicatorCol[T: ClassTag](
val feaLen: Int,
val isCount: Boolean = true
) (implicit ev: TensorNumeric[T])
extends Operation[Tensor[Int], Tensor[T], T]{
output = Tensor[T]()
override def updateOutput(input: Tensor[Int]): Tensor[T] = {
require(input.getTensorType == SparseType, "Only sparse input is supported")
val rows = input.size(dim = 1)
val resTensor = Tensor[T](rows, feaLen)
var i = 1
while (i <= rows) {
val narrowTensor = input.narrow(1, i, 1)
val tempArr = narrowTensor.storage().array().slice(
narrowTensor.storageOffset()-1, narrowTensor.storageOffset() - 1 + narrowTensor.nElement())
var j = 0
while (j < tempArr.length) {
require(tempArr(j) < feaLen, "the parameter feaLen is set too small")
isCount match {
case false =>
resTensor.setValue(i, tempArr(j) + 1, ev.one)
case true =>
val res = ev.toType[Int](resTensor.valueAt(i, tempArr(j) + 1)) + 1
resTensor.setValue(i, tempArr(j) + 1, ev.fromType[Int](res))
}
j += 1
}
i += 1
}
output = resTensor
output
}
}
object IndicatorCol {
def apply[T: ClassTag](
feaLen: Int,
isCount: Boolean = true
)(implicit ev: TensorNumeric[T]): IndicatorCol[T]
= new IndicatorCol[T](
feaLen = feaLen,
isCount = isCount
)
}