com.intel.analytics.bigdl.nn.ops.Max.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.ops
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import scala.reflect.ClassTag
/**
* Computes the maximum of elements across dimensions of a tensor.
* The input of Max should be two tensor, the first one is data,
* the second one is the dimension to compute maximum.
* @param keepDims if keepDims is false, will delete the singleton dimension
* in output.
* @param startFromZero if the dimension count from zero.
*/
class Max[T: ClassTag, D: ClassTag](
keepDims: Boolean = false,
startFromZero: Boolean = false
)(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D]
) extends Operation[Table, Tensor[D], T] {
output = Tensor[D]()
// just a buffer using in tensor.max.
protected val indices: Tensor[D] = Tensor[D]()
override def updateOutput(input: Table): Tensor[D] = {
val x = input[Tensor[D]](1)
val y = input[Tensor[Int]](2)
require(y.isScalar || (y.nElement() == 1 && y.dim() == 1),
s"reduction indices should be a scalar or one-element tensor")
val reductionIndices = if (startFromZero) {
y.value() + 1
} else {
y.value()
}
require(reductionIndices <= x.nDimension(), s"reduction indices should smaller than" +
s" input's dimension, excepted smaller than ${x.dim()}, but got ${reductionIndices}")
x.max(output, indices, reductionIndices)
if(keepDims) {
output
} else {
output.squeeze(reductionIndices)
}
}
override def getClassTagNumerics() : (Array[ClassTag[_]], Array[TensorNumeric[_]]) = {
(Array[ClassTag[_]](scala.reflect.classTag[T], scala.reflect.classTag[D]),
Array[TensorNumeric[_]](ev, ev2))
}
override def clearState(): Max.this.type = {
super.clearState()
indices.set()
this
}
}
object Max {
def apply[T: ClassTag, D: ClassTag](
keepDims: Boolean = false,
startFromZero: Boolean = false)(
implicit ev: TensorNumeric[T], ev2: TensorNumeric[D]): Max[T, D] = {
new Max[T, D](keepDims, startFromZero)
}
}