com.intel.analytics.bigdl.nn.ops.Prod.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.ops
import com.intel.analytics.bigdl.nn.abstractnn.Activity
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.{NumericWildCard, TensorNumeric}
import scala.reflect.ClassTag
class Prod[T: ClassTag](
axis: Int = 1,
keepDim: Boolean = false)
(implicit ev: TensorNumeric[T]) extends Operation[Tensor[_], Tensor[_], T] {
private def getPositiveDimension(input: Tensor[_]): Int = {
var dimension = this.axis
if (dimension < 0) {
dimension = input.dim() + dimension + 1
}
require(input.dim() >= dimension, "dimension exceeds input dimensions")
dimension
}
def updateOutput(input: Tensor[_]): Tensor[_] = {
val dimension = getPositiveDimension(input)
if (output.getType() != input.getType()) {
output = input.emptyInstance()
}
output.asInstanceOf[Tensor[NumericWildCard]]
.prod(input.asInstanceOf[Tensor[NumericWildCard]], dimension)
if (output.nDimension() > 1 && !keepDim) {
output.squeeze(dimension)
}
output
}
}
object Prod {
def apply[T: ClassTag](axis: Int, keepDim: Boolean = false)
(implicit ev: TensorNumeric[T]): Operation[Activity, Activity, T]
= ModuleToOperation[T](
new Prod(axis = axis, keepDim = keepDim))
}