com.intel.analytics.bigdl.nn.ops.RangeOps.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.ops
import com.intel.analytics.bigdl.nn.abstractnn.Activity
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import scala.reflect.ClassTag
class RangeOps[T: ClassTag, D: ClassTag]()
(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D])
extends Operation[Table, Tensor[D], T] {
output = Tensor[D]()
override def updateOutput(input: Table): Tensor[D] = {
require(input.length() == 3, s"require 3 tensors as input, but get ${input.length()}")
val start = input[Tensor[D]](1).value()
val limit = input[Tensor[D]](2).value()
val delta = input[Tensor[D]](3).value()
output = Tensor[D](ev2.toType[Int](ev2.divide(ev2.minus(limit, start), delta)))
var i = 0
while(i < output.size(1)) {
output.setValue(i + 1, ev2.plus(start, ev2.times(ev2.fromType(i), delta)))
i += 1
}
output
}
override def getClassTagNumerics() : (Array[ClassTag[_]], Array[TensorNumeric[_]]) = {
(Array[ClassTag[_]](scala.reflect.classTag[T], scala.reflect.classTag[D]),
Array[TensorNumeric[_]](ev, ev2))
}
}
object RangeOps {
def apply[T: ClassTag, D: ClassTag]()(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D])
: RangeOps[T, D] = new RangeOps[T, D]()
}