com.intel.analytics.bigdl.nn.ops.Sum.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.ops
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import com.intel.analytics.bigdl.nn.{Sum => SumLayer}
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
class Sum[T: ClassTag, D: ClassTag](val keepDims: Boolean, val startFromZero: Boolean = false)
(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D])
extends Operation[Table, Tensor[D], T] {
private val sum: SumLayer[D] = SumLayer[D](squeeze = !keepDims)
output = Tensor[D]()
override def updateOutput(input: Table): Tensor[D] = {
val data = input[Tensor[D]](1)
val dims = input[Tensor[Int]](2)
output.resizeAs(data).copy(data)
val sumDims = if (dims.isEmpty) {
return output
} else if (dims.isScalar) {
Array(if (startFromZero) dims.value() + 1 else dims.value())
} else {
require(dims.nDimension() == 1, s"Only accept 1D as dims, but now is ${dims.nDimension()}")
val buffer = new ArrayBuffer[Int]()
dims.apply1(a => {
buffer.append(if (startFromZero) a + 1 else a)
a
})
buffer.toArray.sortWith(_ > _)
}
var i = 0
while(i < sumDims.length) {
sum.changeSumDims(sumDims(i))
val tmp = sum.updateOutput(output)
output.resizeAs(tmp).copy(tmp)
i += 1
}
output
}
override def getClassTagNumerics() : (Array[ClassTag[_]], Array[TensorNumeric[_]]) = {
(Array[ClassTag[_]](scala.reflect.classTag[T], scala.reflect.classTag[D]),
Array[TensorNumeric[_]](ev, ev2))
}
}
object Sum {
def apply[T: ClassTag, D: ClassTag](keepDims: Boolean = false, startFromZero: Boolean = false)
(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D]): Sum[T, D] =
new Sum(keepDims, startFromZero)
}