com.intel.analytics.bigdl.nn.tf.StateOps.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.tf
import com.intel.analytics.bigdl.nn.abstractnn.Activity
import com.intel.analytics.bigdl.nn.ops.Operation
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.{NumericWildcard, TensorNumeric}
import com.intel.analytics.bigdl.utils.{T, Table}
import scala.reflect.ClassTag
private[bigdl] class Variable[T: ClassTag](
val variableValue: Tensor[T],
val variableGradient: Tensor[T]
)(implicit ev: TensorNumeric[T])
extends Operation[Activity, Tensor[T], T] with WithoutInput{
override def clearState(): this.type = {
this
}
override def parameters(): (Array[Tensor[T]], Array[Tensor[T]]) = {
(Array(this.variableValue), Array(this.variableGradient))
}
override def updateOutput(input: Activity): Tensor[T] = {
this.output.resizeAs(variableValue)
this.output.copy(variableValue)
output
}
override def accGradParameters(input: Activity, gradOutput: Tensor[T]): Unit = {
this.variableGradient.add(ev.fromType[Double](1.0), gradOutput)
}
}
/**
* Update 'ref' by assigning 'value' to it.
*
* This operation outputs a Tensor that holds the new value of 'ref' after
* the value has been assigned.
* This makes it easier to chain operations that need to use the reset value.
*
* The `input` has two elements, the first one is `ref`, the second is `value`.
*
* @param validateShape An optional bool. Defaults to True.
* If true, the operation will validate that the shape of
* 'value' matches the shape of the Tensor being assigned to.
* If false, 'ref' will take on the shape of 'value'.
* @param useLocking An optional bool. Defaults to True.
* If True, the assignment will be protected by a lock;
* otherwise the behavior is undefined, but may exhibit less contention.
*
* @tparam T Numeric type. Only support float/double now
*/
private[bigdl] class Assign[T: ClassTag](
val validateShape: Boolean = true,
val useLocking: Boolean = true
)
(implicit ev: TensorNumeric[T]) extends Operation[Table, Tensor[_], T] {
override def updateOutput(input: Table): Tensor[_] = {
val input1 = input[Tensor[NumericWildcard]](1)
val input2 = input[Tensor[NumericWildcard]](2)
require(input1.getType() == input2.getType(),
"ref and value must have the same tensor numeric type")
if (output.getType() != input2.getType()) {
output = input2.emptyInstance()
}
if (validateShape) {
var i = 1
while (i <= input1.dim()) {
require(input1.size(i) == input2.size(i), "shape of the ref and value are not same")
i += 1
}
}
input1
.resizeAs(input2)
.copy(input2)
output.asInstanceOf[Tensor[NumericWildcard]]
.resizeAs(input2)
.copy(input2)
}
}
private[bigdl] class AssignGrad[T: ClassTag](grad: Tensor[T])(implicit ev: TensorNumeric[T])
extends Operation[Tensor[T], Activity, T]{
override def updateOutput(input: Tensor[T]): Activity = {
grad.copy(input)
null
}
}