Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: function.proto
package org.tensorflow.framework;
/**
*
* GradientDef defines the gradient function of a function defined in
* a function library.
* A gradient function g (specified by gradient_func) for a function f
* (specified by function_name) must follow the following:
* The function 'f' must be a numerical function which takes N inputs
* and produces M outputs. Its gradient function 'g', which is a
* function taking N + M inputs and produces N outputs.
* I.e. if we have
* (y1, y2, ..., y_M) = f(x1, x2, ..., x_N),
* then, g is
* (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N,
* dL/dy1, dL/dy2, ..., dL/dy_M),
* where L is a scalar-value function of (x1, x2, ..., xN) (e.g., the
* loss function). dL/dx_i is the partial derivative of L with respect
* to x_i.
*
*
* Protobuf type {@code tensorflow.GradientDef}
*/
public final class GradientDef extends
com.google.protobuf.GeneratedMessageV3 implements
// @@protoc_insertion_point(message_implements:tensorflow.GradientDef)
GradientDefOrBuilder {
// Use GradientDef.newBuilder() to construct.
private GradientDef(com.google.protobuf.GeneratedMessageV3.Builder> builder) {
super(builder);
}
private GradientDef() {
functionName_ = "";
gradientFunc_ = "";
}
@java.lang.Override
public final com.google.protobuf.UnknownFieldSet
getUnknownFields() {
return com.google.protobuf.UnknownFieldSet.getDefaultInstance();
}
private GradientDef(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
this();
int mutable_bitField0_ = 0;
try {
boolean done = false;
while (!done) {
int tag = input.readTag();
switch (tag) {
case 0:
done = true;
break;
default: {
if (!input.skipField(tag)) {
done = true;
}
break;
}
case 10: {
java.lang.String s = input.readStringRequireUtf8();
functionName_ = s;
break;
}
case 18: {
java.lang.String s = input.readStringRequireUtf8();
gradientFunc_ = s;
break;
}
}
}
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.setUnfinishedMessage(this);
} catch (java.io.IOException e) {
throw new com.google.protobuf.InvalidProtocolBufferException(
e).setUnfinishedMessage(this);
} finally {
makeExtensionsImmutable();
}
}
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return org.tensorflow.framework.FunctionProtos.internal_static_tensorflow_GradientDef_descriptor;
}
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return org.tensorflow.framework.FunctionProtos.internal_static_tensorflow_GradientDef_fieldAccessorTable
.ensureFieldAccessorsInitialized(
org.tensorflow.framework.GradientDef.class, org.tensorflow.framework.GradientDef.Builder.class);
}
public static final int FUNCTION_NAME_FIELD_NUMBER = 1;
private volatile java.lang.Object functionName_;
/**
*
*
* optional string gradient_func = 2;
*/
public com.google.protobuf.ByteString
getGradientFuncBytes() {
java.lang.Object ref = gradientFunc_;
if (ref instanceof java.lang.String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8(
(java.lang.String) ref);
gradientFunc_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
private byte memoizedIsInitialized = -1;
public final boolean isInitialized() {
byte isInitialized = memoizedIsInitialized;
if (isInitialized == 1) return true;
if (isInitialized == 0) return false;
memoizedIsInitialized = 1;
return true;
}
public void writeTo(com.google.protobuf.CodedOutputStream output)
throws java.io.IOException {
if (!getFunctionNameBytes().isEmpty()) {
com.google.protobuf.GeneratedMessageV3.writeString(output, 1, functionName_);
}
if (!getGradientFuncBytes().isEmpty()) {
com.google.protobuf.GeneratedMessageV3.writeString(output, 2, gradientFunc_);
}
}
public int getSerializedSize() {
int size = memoizedSize;
if (size != -1) return size;
size = 0;
if (!getFunctionNameBytes().isEmpty()) {
size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, functionName_);
}
if (!getGradientFuncBytes().isEmpty()) {
size += com.google.protobuf.GeneratedMessageV3.computeStringSize(2, gradientFunc_);
}
memoizedSize = size;
return size;
}
private static final long serialVersionUID = 0L;
@java.lang.Override
public boolean equals(final java.lang.Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof org.tensorflow.framework.GradientDef)) {
return super.equals(obj);
}
org.tensorflow.framework.GradientDef other = (org.tensorflow.framework.GradientDef) obj;
boolean result = true;
result = result && getFunctionName()
.equals(other.getFunctionName());
result = result && getGradientFunc()
.equals(other.getGradientFunc());
return result;
}
@java.lang.Override
public int hashCode() {
if (memoizedHashCode != 0) {
return memoizedHashCode;
}
int hash = 41;
hash = (19 * hash) + getDescriptorForType().hashCode();
hash = (37 * hash) + FUNCTION_NAME_FIELD_NUMBER;
hash = (53 * hash) + getFunctionName().hashCode();
hash = (37 * hash) + GRADIENT_FUNC_FIELD_NUMBER;
hash = (53 * hash) + getGradientFunc().hashCode();
hash = (29 * hash) + unknownFields.hashCode();
memoizedHashCode = hash;
return hash;
}
public static org.tensorflow.framework.GradientDef parseFrom(
com.google.protobuf.ByteString data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.framework.GradientDef parseFrom(
com.google.protobuf.ByteString data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.framework.GradientDef parseFrom(byte[] data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.framework.GradientDef parseFrom(
byte[] data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.framework.GradientDef parseFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static org.tensorflow.framework.GradientDef parseFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
public static org.tensorflow.framework.GradientDef parseDelimitedFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input);
}
public static org.tensorflow.framework.GradientDef parseDelimitedFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input, extensionRegistry);
}
public static org.tensorflow.framework.GradientDef parseFrom(
com.google.protobuf.CodedInputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static org.tensorflow.framework.GradientDef parseFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
public Builder newBuilderForType() { return newBuilder(); }
public static Builder newBuilder() {
return DEFAULT_INSTANCE.toBuilder();
}
public static Builder newBuilder(org.tensorflow.framework.GradientDef prototype) {
return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype);
}
public Builder toBuilder() {
return this == DEFAULT_INSTANCE
? new Builder() : new Builder().mergeFrom(this);
}
@java.lang.Override
protected Builder newBuilderForType(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
Builder builder = new Builder(parent);
return builder;
}
/**
*
* GradientDef defines the gradient function of a function defined in
* a function library.
* A gradient function g (specified by gradient_func) for a function f
* (specified by function_name) must follow the following:
* The function 'f' must be a numerical function which takes N inputs
* and produces M outputs. Its gradient function 'g', which is a
* function taking N + M inputs and produces N outputs.
* I.e. if we have
* (y1, y2, ..., y_M) = f(x1, x2, ..., x_N),
* then, g is
* (dL/dx1, dL/dx2, ..., dL/dx_N) = g(x1, x2, ..., x_N,
* dL/dy1, dL/dy2, ..., dL/dy_M),
* where L is a scalar-value function of (x1, x2, ..., xN) (e.g., the
* loss function). dL/dx_i is the partial derivative of L with respect
* to x_i.
*
*
* Protobuf type {@code tensorflow.GradientDef}
*/
public static final class Builder extends
com.google.protobuf.GeneratedMessageV3.Builder implements
// @@protoc_insertion_point(builder_implements:tensorflow.GradientDef)
org.tensorflow.framework.GradientDefOrBuilder {
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return org.tensorflow.framework.FunctionProtos.internal_static_tensorflow_GradientDef_descriptor;
}
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return org.tensorflow.framework.FunctionProtos.internal_static_tensorflow_GradientDef_fieldAccessorTable
.ensureFieldAccessorsInitialized(
org.tensorflow.framework.GradientDef.class, org.tensorflow.framework.GradientDef.Builder.class);
}
// Construct using org.tensorflow.framework.GradientDef.newBuilder()
private Builder() {
maybeForceBuilderInitialization();
}
private Builder(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
super(parent);
maybeForceBuilderInitialization();
}
private void maybeForceBuilderInitialization() {
if (com.google.protobuf.GeneratedMessageV3
.alwaysUseFieldBuilders) {
}
}
public Builder clear() {
super.clear();
functionName_ = "";
gradientFunc_ = "";
return this;
}
public com.google.protobuf.Descriptors.Descriptor
getDescriptorForType() {
return org.tensorflow.framework.FunctionProtos.internal_static_tensorflow_GradientDef_descriptor;
}
public org.tensorflow.framework.GradientDef getDefaultInstanceForType() {
return org.tensorflow.framework.GradientDef.getDefaultInstance();
}
public org.tensorflow.framework.GradientDef build() {
org.tensorflow.framework.GradientDef result = buildPartial();
if (!result.isInitialized()) {
throw newUninitializedMessageException(result);
}
return result;
}
public org.tensorflow.framework.GradientDef buildPartial() {
org.tensorflow.framework.GradientDef result = new org.tensorflow.framework.GradientDef(this);
result.functionName_ = functionName_;
result.gradientFunc_ = gradientFunc_;
onBuilt();
return result;
}
public Builder clone() {
return (Builder) super.clone();
}
public Builder setField(
com.google.protobuf.Descriptors.FieldDescriptor field,
Object value) {
return (Builder) super.setField(field, value);
}
public Builder clearField(
com.google.protobuf.Descriptors.FieldDescriptor field) {
return (Builder) super.clearField(field);
}
public Builder clearOneof(
com.google.protobuf.Descriptors.OneofDescriptor oneof) {
return (Builder) super.clearOneof(oneof);
}
public Builder setRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
int index, Object value) {
return (Builder) super.setRepeatedField(field, index, value);
}
public Builder addRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
Object value) {
return (Builder) super.addRepeatedField(field, value);
}
public Builder mergeFrom(com.google.protobuf.Message other) {
if (other instanceof org.tensorflow.framework.GradientDef) {
return mergeFrom((org.tensorflow.framework.GradientDef)other);
} else {
super.mergeFrom(other);
return this;
}
}
public Builder mergeFrom(org.tensorflow.framework.GradientDef other) {
if (other == org.tensorflow.framework.GradientDef.getDefaultInstance()) return this;
if (!other.getFunctionName().isEmpty()) {
functionName_ = other.functionName_;
onChanged();
}
if (!other.getGradientFunc().isEmpty()) {
gradientFunc_ = other.gradientFunc_;
onChanged();
}
onChanged();
return this;
}
public final boolean isInitialized() {
return true;
}
public Builder mergeFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
org.tensorflow.framework.GradientDef parsedMessage = null;
try {
parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry);
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
parsedMessage = (org.tensorflow.framework.GradientDef) e.getUnfinishedMessage();
throw e.unwrapIOException();
} finally {
if (parsedMessage != null) {
mergeFrom(parsedMessage);
}
}
return this;
}
private java.lang.Object functionName_ = "";
/**
*