Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl._
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.tensor.{Storage, Tensor}
import scala.reflect.ClassTag
/**
* Bottle allows varying dimensionality input to be forwarded through any module
* that accepts input of nInputDim dimensions, and generates output of nOutputDim dimensions.
*
* @param module transform module
* @param nInputDim nInputDim dimensions of module
* @param nOutputDim1 output of nOutputDim dimensions
*/
@SerialVersionUID(8522437491532919144L)
class Bottle[T: ClassTag](
val module: Module[T],
val nInputDim: Int = 2,
val nOutputDim1: Int = Int.MaxValue)
(implicit ev: TensorNumeric[T]) extends DynamicContainer[Tensor[T], Tensor[T], T] {
private val nOutputDim = if (nOutputDim1 == Int.MaxValue) nInputDim else nOutputDim1
private val dimDelta = nInputDim - nOutputDim
@transient
private var inShape: Tensor[Double] = null
@transient
private var outShape: Tensor[Double] = null
this.modules.insert(0, module)
override def updateOutput(input: Tensor[T]): Tensor[T] = {
// first batchDims dimensions will be fused
val batchDims = input.dim() - nInputDim + 1
if (null == inShape) inShape = Tensor[Double](nInputDim)
if (null == outShape) outShape = Tensor[Double](nOutputDim)
if (batchDims > 1) {
val inSize = Tensor[Double](Storage(input.size.map(_.toDouble)))
val squeezeSize = inSize.storage().array().slice(0, batchDims - 1).product
inShape.copy(inSize.narrow(1, batchDims, input.dim() - batchDims + 1))
inShape.narrow(1, 1, 1).mul(squeezeSize)
// Forward with the module's dimension
val newInput = input.view(inShape.storage().array().map(_.toInt))
val output1 = modules(0).forward(newInput).toTensor[T]
require(output1.dim() == nOutputDim,
s"Bottle: output dims on module should be $nOutputDim, but get ${output1.dim()}")
outShape.copy(Tensor[Double](Storage(output1.size.map(_.toDouble))))
if (math.abs(dimDelta) > 0) inSize.resize(inSize.size(1) - dimDelta)
inSize.narrow(1, batchDims, inSize.size(1) - batchDims + 1).copy(outShape)
inSize.narrow(1, batchDims, 1).div(squeezeSize)
output.set(output1.view(inSize.storage().array().map(_.toInt)))
} else {
output.set(modules(0).forward(input).toTensor[T])
}
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
if (input.dim() > nInputDim) {
val input_ = input.view(inShape.storage().array().map(_.toInt))
val gradOutput_ = gradOutput.view(outShape.storage().array().map(_.toInt))
modules(0).updateGradInput(input_, gradOutput_)
val t2 = modules(0).gradInput.toTensor[T].resizeAs(input)
gradInput.set(t2)
} else {
val t1 = modules(0).updateGradInput(input, gradOutput).toTensor[T]
gradInput.set(t1)
}
gradInput
}
override def accGradParameters(input: Tensor[T], gradOutput: Tensor[T]): Unit = {
if (input.dim() > nInputDim) {
val input_ = input.view(inShape.storage().array().map(_.toInt))
val gradOutput_ = gradOutput.view(outShape.storage().array().map(_.toInt))
modules(0).accGradParameters(input_, gradOutput_)
} else {
modules(0).accGradParameters(input, gradOutput)
}
}
override def toString(): String = {
s"${getPrintName}($module, $nInputDim, $nOutputDim1)"
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[Bottle[T]]
override def equals(other: Any): Boolean = other match {
case that: Bottle[T] =>
super.equals(that) &&
(that canEqual this) &&
module == that.module &&
nInputDim == that.nInputDim &&
nOutputDim1 == that.nOutputDim1
case _ => false
}
override def hashCode(): Int = {
def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
val state = Seq(super.hashCode(), module, nInputDim, nOutputDim1)
state.map(getHashCode).foldLeft(0)((a, b) => 37 * a + b)
}
}
object Bottle {
def apply[@specialized(Float, Double) T: ClassTag](
module: Module[T],
nInputDim: Int = 2,
nOutputDim1: Int = Int.MaxValue)(implicit ev: TensorNumeric[T]) : Bottle[T] = {
new Bottle[T](module, nInputDim, nOutputDim1)
}
}