Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.ops
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, Activity}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.utils.RandomGenerator
import com.intel.analytics.bigdl.utils.serializer.converters.DataConverter
import com.intel.analytics.bigdl.utils.serializer.{DeserializeContext, ModuleSerializable, SerializeContext}
import com.intel.analytics.bigdl.serialization.Bigdl.{AttrValue, BigDLModule}
import scala.reflect.ClassTag
import scala.reflect.runtime.universe
private[bigdl] trait RandomNode
class RandomUniform[T: ClassTag, D: ClassTag](
val minVal: Double, val maxVal: Double, val seed: Option[Int] = None
)(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D])
extends Operation[Tensor[Int], Tensor[D], T] with RandomNode {
if (seed.isDefined) {
RandomGenerator.RNG.setSeed(seed.get)
}
output = Activity.allocate[Tensor[D], D]()
override def updateOutput(input: Tensor[Int]): Tensor[D] = {
require(input.nDimension() == 1, "the shape should be a one-dimensional tensor.")
val shape = input.storage().toArray
output.resize(shape).rand(
minVal,
maxVal)
output
}
override def getClassTagNumerics() : (Array[ClassTag[_]], Array[TensorNumeric[_]]) = {
(Array[ClassTag[_]](scala.reflect.classTag[T], scala.reflect.classTag[D]),
Array[TensorNumeric[_]](ev, ev2))
}
}
object RandomUniform extends ModuleSerializable {
def apply[T: ClassTag, D: ClassTag](
minVal: Double,
maxVal: Double,
seed: Option[Int] = None)
(implicit ev: TensorNumeric[T], ev2: TensorNumeric[D]):
Operation[Activity, Activity, T]
= ModuleToOperation[T](new RandomUniform[T, D](minVal, maxVal, seed))
override def doSerializeModule[T: ClassTag](context: SerializeContext[T],
bigDLModelBuilder: BigDLModule.Builder)(implicit ev: TensorNumeric[T]): Unit = {
val randomUniform = context.moduleData.module.asInstanceOf[RandomUniform[T, _]]
val minValBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, minValBuilder, randomUniform.minVal,
universe.typeOf[Double])
bigDLModelBuilder.putAttr("minVal", minValBuilder.build)
val maxValBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, maxValBuilder, randomUniform.maxVal,
universe.typeOf[Double])
bigDLModelBuilder.putAttr("maxVal", maxValBuilder.build)
if (randomUniform.seed.isDefined) {
val seedBuilder = AttrValue.newBuilder
DataConverter.setAttributeValue(context, seedBuilder, randomUniform.seed.get,
universe.typeOf[Int])
bigDLModelBuilder.putAttr("seed", seedBuilder.build)
}
}
override def doLoadModule[T: ClassTag](context: DeserializeContext)
(implicit ev: TensorNumeric[T]): AbstractModule[Activity, Activity, T] = {
val attrMap = context.bigdlModule.getAttrMap
val minVal = attrMap.get("minVal").getDoubleValue
val maxVal = attrMap.get("maxVal").getDoubleValue
var seed : Option[Int] = None
if (attrMap.containsKey("seed")) {
seed = Option[Int](attrMap.get("seed").getInt32Value)
}
RandomUniform(minVal, maxVal, seed)
}
}