com.intel.analytics.bigdl.example.imageclassification.imageFrame.InceptionValidation.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.example.imageclassification.imageFrame
import com.intel.analytics.bigdl.dataset.DataSet.SeqFileFolder
import com.intel.analytics.bigdl.example.loadmodel.ModelValidator.{TestLocalParams, logger, testLocalParser}
import com.intel.analytics.bigdl.nn.Module
import com.intel.analytics.bigdl.optim.{Top1Accuracy, Top5Accuracy}
import com.intel.analytics.bigdl.transform.vision.image.{ImageFrame, ImageFrameToSample, MatToTensor, PixelBytesToMat}
import com.intel.analytics.bigdl.transform.vision.image.augmentation.{CenterCrop, ChannelNormalize, Resize}
import com.intel.analytics.bigdl.utils.Engine
import org.apache.spark.SparkContext
import scopt.OptionParser
object InceptionValidation {
case class ValidationParam(imageFolder: String = "",
modelPath: String = "",
batchSize: Int = 32)
val parser = new OptionParser[ValidationParam]("Inception validation") {
head("Inception validatio")
opt[String]('f', "folder")
.text("where you put the demo image data")
.action((x, c) => c.copy(imageFolder = x))
.required()
opt[String]("modelPath")
.text("BigDL model")
.action((x, c) => c.copy(modelPath = x))
.required()
opt[Int]('b', "batchSize")
.text("batch size")
.action((x, c) => c.copy(batchSize = x))
}
def main(args: Array[String]): Unit = {
parser.parse(args, ValidationParam()).foreach(param => {
val conf = Engine.createSparkConf()
conf.setAppName("BigDL ImageFrame API Example")
val sc = new SparkContext(conf)
Engine.init
val imageFrame = SeqFileFolder.filesToImageFrame(param.imageFolder, sc, 1000)
val model = Module.loadModule[Float](param.modelPath)
val transformer = PixelBytesToMat() -> Resize(256, 256) ->
CenterCrop(224, 224) -> ChannelNormalize(123, 117, 104) ->
MatToTensor[Float]() ->
ImageFrameToSample[Float](inputKeys = Array("imageTensor"),
targetKeys = Array("label"))
imageFrame -> transformer
val result = model.evaluateImage(
imageFrame,
Array(new Top1Accuracy[Float](), new Top5Accuracy[Float]()),
Some(param.batchSize))
result.foreach(r => {
logger.info(s"${ r._2 } is ${ r._1 }")
})
sc.stop()
})
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy