All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.intel.analytics.bigdl.nn.mkldnn.LRN.scala Maven / Gradle / Ivy

/*
 * Copyright 2016 The BigDL Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.intel.analytics.bigdl.nn.mkldnn

import com.intel.analytics.bigdl.mkl._
import com.intel.analytics.bigdl.nn.abstractnn.{Activity, DataFormat}
import com.intel.analytics.bigdl.nn.mkldnn.Phase.InferencePhase
import com.intel.analytics.bigdl.tensor.Tensor

class LRN(
  size: Int = 5,
  alpha: Double = 1.0,
  beta: Double = 0.75,
  k: Double = 1.0,
  val format: DataFormat = DataFormat.NCHW
) extends MklDnnLayer {
  private val UNDEFINED = 0

  @transient private var workSpace : Tensor[Float] = _
  @transient private var workSpaceFormat: MemoryData = _
  @transient private var fwdPrimDesc: Long = UNDEFINED
  @transient private var fwdMemPrims: Array[Long] = _
  @transient private var bwdMemPrims: Array[Long] = _

  override private[mkldnn] def initFwdPrimitives(inputs: Array[MemoryData], phase: Phase) = {
    // the lrn only support f32
    _inputFormats = Array(NativeData(inputs(0).shape, inputs(0).layout, DataType.F32))

    val kind = if (phase == InferencePhase) {
      PropKind.ForwardScoring
    } else {
      PropKind.ForwardTraining
    }

    val description = MklDnnMemory.LRNForwardDescInit(
      kind, AlgKind.LrnAcrossChannels,
      _inputFormats(0).getMemoryDescription(), size, alpha.toFloat, beta.toFloat, k.toFloat)
    fwdPrimDesc = MklDnnMemory.PrimitiveDescCreate(description, runtime.engine, 0L)
    _outputFormats = Array(MemoryData.primitiveOutput(fwdPrimDesc))

    output = initTensor(_outputFormats(0))

    fwdMemPrims = if (phase == InferencePhase) {
      Array(_inputFormats(0), _outputFormats(0)).map(_.getPrimitive(runtime))
    } else {
      // we only create the workspace when the phase is training
      workSpaceFormat = MemoryData.operationWant(fwdPrimDesc, Query.WorkspacePd)
      workSpace = initTensor(workSpaceFormat).asInstanceOf[Tensor[Float]]
      Array(_inputFormats(0), _outputFormats(0), workSpaceFormat).map(_.getPrimitive(runtime))
    }

    updateOutputPrimitives = Array(MklDnnMemory.PrimitiveCreate2(fwdPrimDesc,
      _inputFormats.map(_.getPrimitive(runtime)), Array(0), 1,
      fwdMemPrims.drop(1), fwdMemPrims.length - 1))

    (_inputFormats, _outputFormats)
  }

  override private[mkldnn] def initBwdPrimitives(grad: Array[MemoryData], phase: Phase) = {
    _gradOutputFormats = singleNativeData(grad)
    _gradOutputFormatsForWeight = _gradOutputFormats
    val description = MklDnnMemory.LRNBackwardDescInit(AlgKind.LrnAcrossChannels,
      _inputFormats(0).getMemoryDescription(),
      _gradOutputFormats(0).getMemoryDescription(), size, alpha.toFloat, beta.toFloat, k.toFloat)
    require(fwdPrimDesc != UNDEFINED, "You should call initFwdPrimitives first")
    val primDesc = MklDnnMemory.PrimitiveDescCreate(description, runtime.engine, fwdPrimDesc)
    _gradInputFormats = Array(MemoryData.operationWant(primDesc, Query.DiffSrcPd))
    updateGradInputPrimitives = Array(MklDnnMemory.PrimitiveCreate2(primDesc,
      Array(_inputFormats(0), _gradOutputFormats(0), workSpaceFormat).map(_.getPrimitive(runtime)),
      Array(0, 0, 0), 3, _gradInputFormats.map(_.getPrimitive(runtime)), 1))
    gradInput = initTensor(_gradInputFormats(0))
    bwdMemPrims = Array(_inputFormats(0), _gradOutputFormats(0), workSpaceFormat,
      _gradInputFormats(0)).map(_.getPrimitive(runtime))
    (_gradOutputFormats, _gradInputFormats)
  }

  override def updateOutput(input: Activity): Activity = {
    val buffer = if (fwdMemPrims.length == 3) {
      Array(input.asInstanceOf[Tensor[Float]], output.asInstanceOf[Tensor[Float]], workSpace)
    } else {
      Array(input.asInstanceOf[Tensor[Float]], output.asInstanceOf[Tensor[Float]])
    }
    MklDnnOps.streamSubmit(runtime.stream, 1, updateOutputPrimitives, 1, fwdMemPrims,
      buffer)
    output
  }

  override def updateGradInput(input: Activity, gradOutput: Activity): Activity = {
    val buffer = Array(
      input.asInstanceOf[Tensor[Float]], gradOutput.asInstanceOf[Tensor[Float]], workSpace,
      gradInput.asInstanceOf[Tensor[Float]])
    MklDnnOps.streamSubmit(runtime.stream, 1, updateGradInputPrimitives, 1,
      bwdMemPrims, buffer)
    gradInput
  }
}

object LRN {
  def apply(size: Int = 5, alpha: Double = 1.0, beta: Double = 0.75, k: Double = 1.0,
            format: DataFormat = DataFormat.NCHW): LRN =
    new LRN(size, alpha, beta, k, format)
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy