com.intel.analytics.bigdl.nn.CMinTable.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import scala.reflect.ClassTag
/**
* Takes a table of Tensors and outputs the min of all of them.
*/
@SerialVersionUID(8888147326550637025L)
class CMinTable[T: ClassTag](implicit ev: TensorNumeric[T])
extends AbstractModule[Table, Tensor[T], T]{
@transient
private var minIdx: Tensor[T] = null
@transient
private var mask: Tensor[T] = null
@transient
private var maskResult: Tensor[T] = null
override def updateOutput(input: Table): Tensor[T] = {
if (null == minIdx) minIdx = Tensor[T]()
if (null == mask) mask = Tensor[T]()
if (null == maskResult) maskResult = Tensor[T]()
val res1 = input[Tensor[T]](1)
output.resizeAs(res1).copy(res1)
minIdx.resizeAs(res1).fill(ev.fromType(1))
var i = 2
while (i <= input.length()) {
mask.resize(res1.size())
mask.lt(input(i), output)
minIdx.maskedFill(mask, ev.fromType(i))
if (ev.isGreater(mask.sum(), ev.fromType(0))) {
output.maskedCopy(mask, input[Tensor[T]](i).maskedSelect(mask, maskResult))
}
i += 1
}
output
}
override def updateGradInput(input: Table, gradOutput: Tensor[T]): Table = {
var i = 1
while (i <= input.length()) {
if (!gradInput.contains(i)) gradInput.insert(i, Tensor[T]())
gradInput[Tensor[T]](i).resizeAs(input(i)).zero()
mask.resize(minIdx.size())
mask.eq(minIdx, ev.fromType(i))
if (ev.isGreater(mask.sum(), ev.fromType(0))) {
gradInput.apply[Tensor[T]](i).maskedCopy(mask, gradOutput.maskedSelect(mask, maskResult))
}
i += 1
}
gradInput
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[CMinTable[T]]
override def equals(other: Any): Boolean = other match {
case that: CMinTable[T] =>
super.equals(that) &&
(that canEqual this)
case _ => false
}
override def hashCode(): Int = {
def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
val state = Seq(super.hashCode())
state.map(getHashCode).foldLeft(0)((a, b) => 31 * a + b)
}
}
object CMinTable {
def apply[@specialized(Float, Double) T: ClassTag]()
(implicit ev: TensorNumeric[T]) : CMinTable[T] = {
new CMinTable[T]()
}
}