com.intel.analytics.bigdl.example.languagemodel.PTBModel.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.example.languagemodel
import com.intel.analytics.bigdl.Module
import com.intel.analytics.bigdl.mkl.Memory
import com.intel.analytics.bigdl.nn.Graph._
import com.intel.analytics.bigdl.nn.{TimeDistributed, _}
import com.intel.analytics.bigdl.utils.{Engine, MklDnn}
object PTBModel {
def transformer(
inputSize: Int = 10000,
hiddenSize: Int = 256,
outputSize: Int = 10000,
numLayers: Int = 2,
keepProb: Float = 2.0f)
: Module[Float] = {
val input = Input[Float]()
val transformer = Transformer[Float](vocabSize = inputSize,
hiddenSize = hiddenSize, numHeads = 4, filterSize = hiddenSize*4,
numHiddenlayers = numLayers, embeddingDropout = 1- keepProb,
attentionDropout = 0.1f, ffnDropout = 0.1f).inputs(input)
val linear = Linear[Float](hiddenSize, outputSize)
val output = TimeDistributed[Float](linear).inputs(transformer)
Graph(input, output)
}
def lstm(
inputSize: Int,
hiddenSize: Int,
outputSize: Int,
numLayers: Int,
keepProb: Float = 2.0f)
: Module[Float] = {
val input = Input[Float]()
val embeddingLookup = LookupTable[Float](inputSize, hiddenSize).inputs(input)
val inputs = if (keepProb < 1) {
Dropout[Float](keepProb).inputs(embeddingLookup)
} else embeddingLookup
val lstm = addLayer(hiddenSize, hiddenSize, 1, numLayers, inputs)
val linear = Linear[Float](hiddenSize, outputSize)
val output = TimeDistributed[Float](linear).inputs(lstm)
val model = Graph(input, output)
model.asInstanceOf[StaticGraph[Float]].setInputFormats(Seq(Memory.Format.nc))
model.asInstanceOf[StaticGraph[Float]].setOutputFormats(Seq(Memory.Format.ntc))
if (Engine.getEngineType() == MklDnn) model.asInstanceOf[StaticGraph[Float]].toIRgraph()
else model
}
private def addLayer(inputSize: Int,
hiddenSize: Int,
depth: Int,
numLayers: Int,
input: ModuleNode[Float]): ModuleNode[Float] = {
if (depth == numLayers) {
Recurrent[Float]()
.add(LSTM[Float](inputSize, hiddenSize, 0, null, null, null))
.inputs(input)
} else {
addLayer(
inputSize,
hiddenSize,
depth + 1,
numLayers,
Recurrent[Float]()
.add(LSTM[Float](inputSize, hiddenSize, 0, null, null, null))
.inputs(input)
)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy