com.intel.analytics.bigdl.models.maskrcnn.Test.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.models.maskrcnn
import com.intel.analytics.bigdl.models.resnet.Utils.{TestParams, _}
import com.intel.analytics.bigdl.transform.vision.image._
import com.intel.analytics.bigdl.transform.vision.image.augmentation._
import com.intel.analytics.bigdl.utils.{Engine, T}
import scopt.OptionParser
import com.intel.analytics.bigdl.dataset.{DataSet, MiniBatch, segmentation}
import com.intel.analytics.bigdl.nn.Module
import com.intel.analytics.bigdl.optim.MeanAveragePrecision
import org.apache.spark.{SparkContext, rdd}
object Test {
case class TestParams(
folder: String = "./",
model: String = "",
batchSize: Int = 2,
partitionNum: Int = -1
)
val testParser = new OptionParser[TestParams]("BigDL Mask-RCNN on COCO Test Example") {
opt[String]('f', "folder")
.text("the location of COCO dataset")
.action((x, c) => c.copy(folder = x))
opt[String]('m', "model")
.text("the location of model snapshot")
.action((x, c) => c.copy(model = x))
opt[Int]('b', "batchSize")
.text("total batch size")
.action((x, c) => c.copy(batchSize = x))
opt[Int]('p', "partitionNum")
.text("partition number")
.action((x, c) => c.copy(partitionNum = x))
}
def main(args: Array[String]): Unit = {
testParser.parse(args, TestParams()).foreach { param => {
val conf = Engine.createSparkConf().setAppName("Test MaskRCNN on COCO")
.set("spark.akka.frameSize", 64.toString)
.set("spark.task.maxFailures", "1")
val sc = new SparkContext(conf)
Engine.init
val partitionNum = if (param.partitionNum > 0) param.partitionNum
else Engine.nodeNumber() * Engine.coreNumber()
val rddData = DataSet.SeqFileFolder.filesToRoiImageFeatures(param.folder,
sc, Some(partitionNum))
.toDistributed().data(train = false)
val transformer = RoiImageFeatureToBatch.withResize(
sizeDivisible = 32,
batchSize = param.batchSize / Engine.nodeNumber(),
transformer =
PixelBytesToMat() ->
ScaleResize(minSize = 800, maxSize = 1333) ->
ChannelNormalize(122.7717f, 115.9465f, 102.9801f) ->
MatToTensor[Float](),
toRGB = false
)
val evaluationSet = transformer(rddData)
val model = Module.loadModule[Float](param.model)
val result = model.evaluate(evaluationSet,
Array(MeanAveragePrecision.cocoBBox(81), MeanAveragePrecision.cocoSegmentation(81)))
result.foreach(r => println(s"${r._2} is ${r._1}"))
sc.stop()
}}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy