com.intel.analytics.bigdl.models.rnn.Train.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.models.rnn
import com.intel.analytics.bigdl._
import com.intel.analytics.bigdl.dataset.{DataSet, FixedLength, PaddingParam, SampleToMiniBatch}
import com.intel.analytics.bigdl.dataset.text.LabeledSentenceToSample
import com.intel.analytics.bigdl.dataset.text._
import com.intel.analytics.bigdl.dataset.text.utils.SentenceToken
import com.intel.analytics.bigdl.nn.{CrossEntropyCriterion, Module, TimeDistributedCriterion}
import com.intel.analytics.bigdl.optim._
import com.intel.analytics.bigdl.tensor.{Storage, Tensor}
import com.intel.analytics.bigdl.utils.{Engine, OptimizerV1, OptimizerV2, T, Table}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric._
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkContext
object Train {
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
Logger.getLogger("breeze").setLevel(Level.ERROR)
import Utils._
val logger = Logger.getLogger(getClass)
def main(args: Array[String]): Unit = {
trainParser.parse(args, new TrainParams()).map(param => {
val conf = Engine.createSparkConf()
.setAppName("Train rnn on text")
.set("spark.task.maxFailures", "1")
val sc = new SparkContext(conf)
Engine.init
val tokens = SequencePreprocess(
param.dataFolder + "/train.txt",
sc = sc,
param.sentFile,
param.tokenFile)
val dictionary = Dictionary(tokens, param.vocabSize)
dictionary.save(param.saveFolder)
val maxTrainLength = tokens.map(x => x.length).max
val valtokens = SequencePreprocess(
param.dataFolder + "/val.txt",
sc = sc,
param.sentFile,
param.tokenFile)
val maxValLength = valtokens.map(x => x.length).max
logger.info(s"maxTrain length = ${maxTrainLength}, maxVal = ${maxValLength}")
val totalVocabLength = dictionary.getVocabSize() + 1
val startIdx = dictionary.getIndex(SentenceToken.start)
val endIdx = dictionary.getIndex(SentenceToken.end)
val padFeature = Tensor[Float]().resize(totalVocabLength)
padFeature.setValue(endIdx + 1, 1.0f)
val padLabel = Tensor[Float](T(startIdx.toFloat + 1.0f))
val featurePadding = PaddingParam(Some(Array(padFeature)),
FixedLength(Array(maxTrainLength)))
val labelPadding = PaddingParam(Some(Array(padLabel)),
FixedLength(Array(maxTrainLength)))
val trainSet = DataSet.rdd(tokens)
.transform(TextToLabeledSentence[Float](dictionary))
.transform(LabeledSentenceToSample[Float](totalVocabLength))
.transform(SampleToMiniBatch[Float](
param.batchSize,
Some(featurePadding),
Some(labelPadding)))
val validationSet = DataSet.rdd(valtokens)
.transform(TextToLabeledSentence[Float](dictionary))
.transform(LabeledSentenceToSample[Float](totalVocabLength))
.transform(SampleToMiniBatch[Float](param.batchSize,
Some(featurePadding), Some(labelPadding)))
val model = if (param.modelSnapshot.isDefined) {
Module.load[Float](param.modelSnapshot.get)
} else {
val curModel = SimpleRNN(
inputSize = totalVocabLength,
hiddenSize = param.hiddenSize,
outputSize = totalVocabLength)
curModel.reset()
curModel
}
if (param.optimizerVersion.isDefined) {
param.optimizerVersion.get.toLowerCase match {
case "optimizerv1" => Engine.setOptimizerVersion(OptimizerV1)
case "optimizerv2" => Engine.setOptimizerVersion(OptimizerV2)
}
}
val optimMethod = if (param.stateSnapshot.isDefined) {
OptimMethod.load[Float](param.stateSnapshot.get)
} else {
new SGD[Float](learningRate = param.learningRate, learningRateDecay = 0.0,
weightDecay = param.weightDecay, momentum = param.momentum, dampening = param.dampening)
}
val optimizer = Optimizer(
model = model,
dataset = trainSet,
criterion = TimeDistributedCriterion[Float](
CrossEntropyCriterion[Float](), sizeAverage = true)
)
if (param.checkpoint.isDefined) {
optimizer.setCheckpoint(param.checkpoint.get, Trigger.everyEpoch)
}
if(param.overWriteCheckpoint) {
optimizer.overWriteCheckpoint()
}
optimizer
.setValidation(Trigger.everyEpoch, validationSet, Array(new Loss[Float](
TimeDistributedCriterion[Float](CrossEntropyCriterion[Float](), sizeAverage = true))))
.setOptimMethod(optimMethod)
.setEndWhen(Trigger.maxEpoch(param.nEpochs))
.setCheckpoint(param.checkpoint.get, Trigger.everyEpoch)
.optimize()
sc.stop()
})
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy