com.intel.analytics.bigdl.models.utils.DistriOptimizerPerf.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.models.utils
import com.intel.analytics.bigdl._
import com.intel.analytics.bigdl.dataset.{DistributedDataSet, MiniBatch}
import com.intel.analytics.bigdl.models.inception.{Inception_v1, Inception_v2}
import com.intel.analytics.bigdl.models.vgg.{Vgg_16, Vgg_19}
import com.intel.analytics.bigdl.nn.ClassNLLCriterion
import com.intel.analytics.bigdl.numeric.NumericFloat
import com.intel.analytics.bigdl.optim.{Optimizer, Trigger}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.utils.Engine
import org.apache.log4j.{Level, Logger}
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import scopt.OptionParser
object DistriOptimizerPerf {
Logger.getLogger("org").setLevel(Level.ERROR)
Logger.getLogger("akka").setLevel(Level.ERROR)
Logger.getLogger("breeze").setLevel(Level.ERROR)
Logger.getLogger("com.intel.analytics.bigdl.optim").setLevel(Level.DEBUG)
val parser = new OptionParser[DistriOptimizerPerfParam]("BigDL Distribute Performance Test") {
head("Performance Test of Distribute Optimizer")
opt[Int]('b', "batchSize")
.text("Batch size of input data")
.action((v, p) => p.copy(batchSize = v))
opt[Int]('e', "maxEpoch")
.text("epoch numbers of the test")
.action((v, p) => p.copy(maxEpoch = v))
opt[String]('t', "type")
.text("Data type. It can be float | double")
.action((v, p) => p.copy(dataType = v))
.validate(v =>
if (v.toLowerCase() == "float" || v.toLowerCase() == "double") {
success
} else {
failure("Data type can only be float or double now")
}
)
opt[String]('m', "model")
.text("Model name. It can be inception_v1 | inception_v2 | vgg16 | " +
"vgg19")
.action((v, p) => p.copy(module = v))
.validate(v =>
if (Set("inception_v1", "inception_v2", "vgg16", "vgg19").
contains(v.toLowerCase())) {
success
} else {
failure("Data type can only be inception_v1 | " +
"vgg16 | vgg19 | inception_v2 now")
}
)
opt[String]('d', "inputdata")
.text("Input data type. One of constant | random")
.action((v, p) => p.copy(inputData = v))
.validate(v =>
if (v.toLowerCase() == "constant" || v.toLowerCase() == "random") {
success
} else {
failure("Input data type must be one of constant and random")
}
)
help("help").text("Prints this usage text")
}
def main(args: Array[String]): Unit = {
parser.parse(args, new DistriOptimizerPerfParam).foreach(performance)
}
def performance(param: DistriOptimizerPerfParam): Unit = {
val conf = Engine.createSparkConf()
.setAppName("DistriOptimizer Performance Test")
.set("spark.task.maxFailures", "1")
val (_model, input) = param.module match {
case "inception_v1" => (Inception_v1(1000), Tensor(param.batchSize, 3, 224, 224))
case "inception_v2" => (Inception_v2(1000), Tensor(param.batchSize, 3, 224, 224))
case "vgg16" => (Vgg_16(1000), Tensor(param.batchSize, 3, 224, 224))
case "vgg19" => (Vgg_19(1000), Tensor(param.batchSize, 3, 224, 224))
}
param.inputData match {
case "constant" => input.fill(0.01f)
case "random" => input.rand()
}
val model = _model
println(model)
val criterion = ClassNLLCriterion[Float]()
val labels = Tensor(param.batchSize).fill(1)
val sc = new SparkContext(conf)
Engine.init
val broadcast = sc.broadcast(MiniBatch(input, labels))
val rdd = sc.parallelize((1 to Engine.nodeNumber()), Engine.nodeNumber())
.mapPartitions(iter => {
Iterator.single((broadcast.value))
}).persist()
rdd.count()
val dummyDataSet = new DistributedDataSet[MiniBatch[Float]] {
override def size(): Long = 10000
override def shuffle(): Unit = {}
override def originRDD(): RDD[_] = rdd
override def data(train: Boolean): RDD[MiniBatch[Float]] = rdd
}
val optimizer = Optimizer(
model,
dummyDataSet,
criterion
)
optimizer.setEndWhen(Trigger.maxEpoch(param.maxEpoch)).optimize()
sc.stop()
}
}
/**
* The parameters of a distributed optimizer
*
* @param batchSize batch size
* @param maxEpoch how many epochs to run
* @param dataType data type (double / float)
* @param module module name
* @param inputData inputData input data type (constant / random)
*/
case class DistriOptimizerPerfParam(
batchSize: Int = 128,
maxEpoch: Int = 5,
dataType: String = "float",
module: String = "inception_v1",
inputData: String = "random"
)
© 2015 - 2025 Weber Informatics LLC | Privacy Policy