com.intel.analytics.bigdl.nn.AbsCriterion.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorCriterion
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* measures the mean absolute value of the element-wise difference between input and target
*/
@SerialVersionUID( - 7860793007567513758L)
class AbsCriterion[@specialized(Float, Double) T: ClassTag](val sizeAverage: Boolean = true)
(implicit ev: TensorNumeric[T]) extends TensorCriterion[T] {
@transient
private var buffer: Tensor[T] = null
override def updateOutput(input: Tensor[T], target : Tensor[T]): T = {
if (null == buffer) buffer = Tensor[T]()
buffer.resizeAs(input).add(input)
buffer.mul(input, ev.fromType[Int](-1)).add(target).abs()
output = buffer.sum()
if (sizeAverage) output = ev.divide(output, ev.fromType[Int](input.nElement()))
output
}
override def updateGradInput(input: Tensor[T], target: Tensor[T]): Tensor[T] = {
gradInput.resizeAs(input).zero()
var norm : Double = 0
if (sizeAverage) {
norm = 1.0/input.nElement()
} else {
norm = 1.0
}
gradInput.mul(input, ev.fromType[Int](-1)).add(target)
require(gradInput.isContiguous(), "AbsCriterion: gradInput should be contiguous")
val bufferArray = gradInput.storage().array()
val bufferOffset = gradInput.storageOffset() - 1
var i = 0
while(i < gradInput.nElement()) {
val z = bufferArray(i)
bufferArray(i + bufferOffset) = ev.times(ev.fromType(norm),
if (ev.isGreater(z, ev.fromType(0))) ev.fromType(-1) else ev.fromType(1))
i += 1
}
gradInput
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[AbsCriterion[T]]
override def equals(other: Any): Boolean = other match {
case that: AbsCriterion[T] =>
super.equals(that) &&
(that canEqual this) &&
sizeAverage == that.sizeAverage
case _ => false
}
override def hashCode(): Int = {
def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
val state = Seq(super.hashCode(), sizeAverage)
state.map(getHashCode).foldLeft(0)((a, b) => 31 * a + b)
}
}
object AbsCriterion {
def apply[@specialized(Float, Double) T: ClassTag](
sizeAverage: Boolean = true)(implicit ev: TensorNumeric[T]) : AbsCriterion[T] = {
new AbsCriterion[T](sizeAverage)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy