com.intel.analytics.bigdl.nn.BinaryThreshold.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.utils.Engine
import scala.collection.mutable.ArrayBuffer
import scala.concurrent.Future
import scala.reflect.ClassTag
/**
* Threshold input Tensor.
* If values in the Tensor smaller than th, then replace it with v
*
* @param th the threshold to compare with
* @param ip inplace mode
*/
@SerialVersionUID(4932292249027276581L)
class BinaryThreshold[T: ClassTag](
val th: Double = 1e-6, val ip: Boolean = false)(
implicit ev: TensorNumeric[T]) extends TensorModule[T] {
var threshold = th
var inPlace = ip
override def updateOutput(input: Tensor[T]): Tensor[T] = {
require(input.isContiguous())
val taskSize = input.nElement() / Engine.model.getPoolSize
var extraTaskSize = input.nElement() % Engine.model.getPoolSize
var allocated = 0
val tasks = new ArrayBuffer[(Int, Int)]()
while (allocated < input.nElement()) {
val end = math.min(input.nElement(), if (extraTaskSize > 0) {
extraTaskSize -= 1
allocated + taskSize + 1
} else {
allocated + taskSize
})
tasks += ((allocated, end))
allocated = end
}
val taskArray = tasks.toArray
val results = new Array[Future[Unit]](taskArray.length)
if (inPlace) {
output = input
ev.getType() match {
case DoubleType =>
val inputDouble = input.asInstanceOf[Tensor[Double]]
val inputData = inputDouble.storage().array()
val inputOffset = inputDouble.storageOffset() - 1
var t = 0
while (t < taskArray.length) {
val _t = t
results(_t) = Engine.model.invoke(() => {
var i = taskArray(_t)._1
while (i < taskArray(_t)._2) {
inputData(inputOffset + i) =
if (inputData(inputOffset + i) <= threshold) {
0.0
} else {
1.0
}
i += 1
}
})
t += 1
}
case FloatType =>
val inputDouble = input.asInstanceOf[Tensor[Float]]
val inputData = inputDouble.storage().array()
val inputOffset = inputDouble.storageOffset() - 1
val valueFloat = 0.0f
var t = 0
while (t < taskArray.length) {
val _t = t
results(_t) = Engine.model.invoke(() => {
var i = taskArray(_t)._1
while (i < taskArray(_t)._2) {
inputData(inputOffset + i) =
if (inputData(inputOffset + i) <= threshold) {
valueFloat
} else {
1.0f
}
i += 1
}
})
t += 1
}
case _ => throw new UnsupportedOperationException(s"Only Float/Double supported")
}
input
}
else {
ev.getType() match {
case DoubleType =>
output.asInstanceOf[Tensor[Double]].resizeAs(input.asInstanceOf[Tensor[Double]])
val inputDouble = input.asInstanceOf[Tensor[Double]]
val inputData = inputDouble.storage().array()
val inputOffset = inputDouble.storageOffset() - 1
val outputDouble = output.asInstanceOf[Tensor[Double]]
val outputData = outputDouble.storage().array()
val outputOffset = outputDouble.storageOffset() - 1
var t = 0
while (t < taskArray.length) {
val _t = t
results(_t) = Engine.model.invoke(() => {
var i = taskArray(_t)._1
while (i < taskArray(_t)._2) {
outputData(outputOffset + i) =
if (inputData(inputOffset + i) > threshold) {
1.0
} else {
0.0
}
i += 1
}
})
t += 1
}
case FloatType =>
output.asInstanceOf[Tensor[Float]].resizeAs(input.asInstanceOf[Tensor[Float]])
val inputFloat = input.asInstanceOf[Tensor[Float]]
val inputData = inputFloat.storage().array()
val inputOffset = inputFloat.storageOffset() - 1
val outputFloat = output.asInstanceOf[Tensor[Float]]
val outputData = outputFloat.storage().array()
val outputOffset = outputFloat.storageOffset() - 1
var t = 0
while (t < taskArray.length) {
val _t = t
results(_t) = Engine.model.invoke(() => {
var i = taskArray(_t)._1
while (i < taskArray(_t)._2) {
outputData(outputOffset + i) =
if (inputData(inputOffset + i) > threshold) {
1.0f
} else {
0.0f
}
i += 1
}
})
t += 1
}
case _ => throw new UnsupportedOperationException(s"Only Float/Double supported")
}
}
Engine.model.sync(results)
output
}
private def updateGradInputNoContinuous(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
if (inPlace) {
gradInput = gradOutput
ev.getType() match {
case DoubleType =>
gradInput.asInstanceOf[Tensor[Double]].map(input.asInstanceOf[Tensor[Double]], (g, i) =>
if (i <= threshold) 0 else g)
case FloatType =>
gradInput.asInstanceOf[Tensor[Float]].map(input.asInstanceOf[Tensor[Float]], (g, i) =>
if (i <= threshold) 0 else g)
case _ =>
throw new UnsupportedOperationException(s"Only Float/Double supported")
}
}
else {
gradInput.resizeAs(gradOutput)
gradInput.copy(gradOutput)
ev.getType() match {
case DoubleType =>
gradInput.asInstanceOf[Tensor[Double]].map(input.asInstanceOf[Tensor[Double]], (g, i) =>
if (i > threshold) g else 0)
case FloatType =>
gradInput.asInstanceOf[Tensor[Float]].map(input.asInstanceOf[Tensor[Float]], (g, i) =>
if (i > threshold) g else 0)
case _ => throw new UnsupportedOperationException(s"Only Float/Double supported")
}
}
gradInput
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
var i = 1
while (i <= input.nDimension()) {
if (input.stride(i) != gradOutput.stride(i)) {
return updateGradInputNoContinuous(input, gradOutput)
}
i += 1
}
val taskSize = gradOutput.nElement() / Engine.model.getPoolSize
var extraTaskSize = gradOutput.nElement() % Engine.model.getPoolSize
var allocated = 0
val tasks = new ArrayBuffer[(Int, Int)]()
while (allocated < gradOutput.nElement()) {
val end = math.min(gradOutput.nElement(), if (extraTaskSize > 0) {
extraTaskSize -= 1
allocated + taskSize + 1
} else {
allocated + taskSize
})
tasks += ((allocated, end))
allocated = end
}
val taskArray = tasks.toArray
val results = new Array[Future[Unit]](taskArray.length)
if (inPlace) {
gradInput = gradOutput
ev.getType() match {
case DoubleType =>
val gradInputDouble = gradInput.asInstanceOf[Tensor[Double]]
val inputDouble = input.asInstanceOf[Tensor[Double]]
val gradInputData = gradInputDouble.storage().array()
val gradInputOffset = gradInputDouble.storageOffset() - 1
val inputData = inputDouble.storage().array()
val inputOffset = inputDouble.storageOffset() - 1
var t = 0
while (t < taskArray.length) {
val _t = t
results(_t) = Engine.model.invoke(() => {
var i = taskArray(_t)._1
while (i < taskArray(_t)._2) {
gradInputData(gradInputOffset + i) =
if (inputData(inputOffset + i) <= threshold) {
0.0
} else {
gradInputData(gradInputOffset + i)
}
i += 1
}
})
t += 1
}
case FloatType =>
val gradInputFloat = gradInput.asInstanceOf[Tensor[Float]]
val inputFloat = input.asInstanceOf[Tensor[Float]]
val gradInputData = gradInputFloat.storage().array()
val gradInputOffset = gradInputFloat.storageOffset() - 1
val inputData = inputFloat.storage().array()
val inputOffset = inputFloat.storageOffset() - 1
var t = 0
while (t < taskArray.length) {
val _t = t
results(_t) = Engine.model.invoke(() => {
var i = taskArray(_t)._1
while (i < taskArray(_t)._2) {
gradInputData(gradInputOffset + i) =
if (inputData(inputOffset + i) <= threshold) {
0.0f
} else {
gradInputData(gradInputOffset + i)
}
i += 1
}
})
t += 1
}
case _ => throw new UnsupportedOperationException(s"Only Float/Double supported")
}
}
else {
ev.getType() match {
case DoubleType =>
gradInput.asInstanceOf[Tensor[Double]].resizeAs(gradOutput.asInstanceOf[Tensor[Double]])
gradInput.asInstanceOf[Tensor[Double]].copy(gradOutput.asInstanceOf[Tensor[Double]])
val gradInputDouble = gradInput.asInstanceOf[Tensor[Double]]
val inputDouble = input.asInstanceOf[Tensor[Double]]
val gradInputData = gradInputDouble.storage().array()
val gradInputOffset = gradInputDouble.storageOffset() - 1
val inputData = inputDouble.storage().array()
val inputOffset = inputDouble.storageOffset() - 1
var t = 0
while (t < taskArray.length) {
val _t = t
results(_t) = Engine.model.invoke(() => {
var i = taskArray(_t)._1
while (i < taskArray(_t)._2) {
gradInputData(gradInputOffset + i) =
if (inputData(inputOffset + i) <= threshold) {
0.0
} else {
gradInputData(gradInputOffset + i)
}
i += 1
}
})
t += 1
}
case FloatType =>
gradInput.asInstanceOf[Tensor[Float]].resizeAs(gradOutput.asInstanceOf[Tensor[Float]])
gradInput.asInstanceOf[Tensor[Float]].copy(gradOutput.asInstanceOf[Tensor[Float]])
val gradInputFloat = gradInput.asInstanceOf[Tensor[Float]]
val inputFloat = input.asInstanceOf[Tensor[Float]]
val gradInputData = gradInputFloat.storage().array()
val gradInputOffset = gradInputFloat.storageOffset() - 1
val inputData = inputFloat.storage().array()
val inputOffset = inputFloat.storageOffset() - 1
var t = 0
while (t < taskArray.length) {
val _t = t
results(_t) = Engine.model.invoke(() => {
var i = taskArray(_t)._1
while (i < taskArray(_t)._2) {
gradInputData(gradInputOffset + i) =
if (inputData(inputOffset + i) <= threshold) {
0.0f
} else {
gradInputData(gradInputOffset + i)
}
i += 1
}
})
t += 1
}
case _ => throw new UnsupportedOperationException(s"Only Float/Double supported")
}
}
Engine.model.sync(results)
gradInput
}
override def equals(obj: Any): Boolean = {
if (!super.equals(obj)) {
return false
}
if (!obj.isInstanceOf[Threshold[T]]) {
return false
}
val other = obj.asInstanceOf[Threshold[T]]
if (this.eq(other)) {
return true
}
threshold == other.threshold && inPlace == other.inPlace
}
override def hashCode() : Int = {
val seed = 37
var hash = super.hashCode()
hash = hash * seed + threshold.hashCode()
hash = hash * seed + inPlace.hashCode()
hash
}
override def toString(): String = {
s"${getPrintName}($th)"
}
}
object BinaryThreshold {
def apply[@specialized(Float, Double) T: ClassTag](
th: Double = 1e-6,
ip: Boolean = false)(implicit ev: TensorNumeric[T]) : BinaryThreshold[T] = {
new BinaryThreshold[T](th, ip)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy