com.intel.analytics.bigdl.nn.DiceCoefficientCriterion.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorCriterion
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.tensor.Tensor
import scala.reflect.ClassTag
/**
* The Dice-Coefficient criterion
* input: Tensor, target: Tensor
*
* return: 2 * (input intersection target)
* 1 - ----------------------------------
* input union target
*
* @param sizeAverage
* @param epsilon small offset
* @tparam T The numeric type in the criterion, usually which are [[Float]] or [[Double]]
*/
@SerialVersionUID(- 1446868477754414191L)
class DiceCoefficientCriterion[@specialized(Float, Double) T: ClassTag]
(val sizeAverage: Boolean = true, val epsilon: Float = 1.0f)
(implicit ev: TensorNumeric[T]) extends TensorCriterion[T] {
@transient
private val buffer1: Tensor[T] = Tensor[T]()
@transient
private val buffer2: Tensor[T] = Tensor[T]()
@transient
private val buffer3: Tensor[T] = Tensor[T]()
@transient
private val w1: Tensor[T] = Tensor[T]()
@transient
private val w2: Tensor[T] = Tensor[T]()
@transient
private val _outputs: Tensor[T] = Tensor[T]()
@transient
private var _input: Tensor[T] = null
@transient
private var _target: Tensor[T] = null
override def updateOutput(input: Tensor[T], target: Tensor[T]): T = {
require((input.dim() == target.dim()) && (input.isSameSizeAs(target)),
"DiceCoefficientCriterion: " + ErrorInfo.constrainInputSizeSameAsTarget +
s"input (${input.dim()}) target(${target.dim()})")
_input = if (input.dim() == 1) input.view(1, input.nElement()) else input
_target = if (target.dim() == 1) target.view(1, target.nElement()) else target
/**
* w1 = 2 \sum(x_i * y_i) + \epsilon
*/
buffer1.resizeAs(_input)
buffer1.cmul(_input, _target)
w1.sum(buffer1, 2)
_outputs.resizeAs(w1).fill(ev.fromType(2))
w1.cmul(_outputs).add(ev.fromType(epsilon))
/**
* w2 = \sum(x_i) + \sum(y_i) + \epsilon
*/
buffer1.sum(_input, 2)
w2.sum(_target, 2).add(buffer1).add(ev.fromType(epsilon))
/**
* Loss = 1 - w1 / w2
*/
_outputs.cdiv(w1, w2).mul(ev.fromType(-1)).add(ev.fromType(1))
output = _outputs.sum()
if (sizeAverage) {
output = ev.divide(output, ev.fromType(_target.size(1)))
}
output
}
override def updateGradInput(input: Tensor[T], target: Tensor[T]): Tensor[T] = {
/**
* buffer1 = w1 / w2*w2
* buffer2 = 1 / w2
*
* gradInput = - 2 * target / w2 + w1 / w2 * w2
*/
buffer2.resizeAs(w2)
buffer2.cmul(w2, w2)
buffer3.resizeAs(w1)
buffer3.cdiv(w1, buffer2)
_outputs.resizeAs(w2).fill(ev.fromType(1))
buffer2.cdiv(_outputs, w2)
gradInput.resizeAs(_input)
gradInput.addcmul(ev.fromType(-2), buffer2.expandAs(_input), _target)
gradInput.add(buffer3.expandAs(_input))
if (sizeAverage) {
gradInput.div(ev.fromType(_target.size(1)))
}
gradInput
}
override def toString(): String = {
s"nn.DiceCoefficientCriterion"
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[DistKLDivCriterion[T]]
override def equals(other: Any): Boolean = other match {
case that: DiceCoefficientCriterion[T] =>
super.equals(that) &&
(that canEqual this) &&
epsilon == that.epsilon &&
sizeAverage == that.sizeAverage
case _ => false
}
override def hashCode(): Int = {
val state = Seq(super.hashCode(), epsilon, sizeAverage)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
}
object DiceCoefficientCriterion {
def apply[@specialized(Float, Double) T: ClassTag](
sizeAverage: Boolean = true, epsilon: Float = 1.0f)
(implicit ev: TensorNumeric[T]) : DiceCoefficientCriterion[T] = {
new DiceCoefficientCriterion[T](sizeAverage, epsilon)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy