com.intel.analytics.bigdl.nn.GaussianCriterion.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.AbstractCriterion
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import scala.reflect.ClassTag
/**
* Computes the log-likelihood of a sample x given a Gaussian distribution p.
*/
class GaussianCriterion[@specialized(Float, Double) T: ClassTag](
implicit ev: TensorNumeric[T]) extends AbstractCriterion[Table, Tensor[T], T] {
@transient
private var mean: Tensor[T] = null
@transient
private var vari: Tensor[T] = null
@transient
private var expVar: Tensor[T] = null
override def updateOutput(input: Table, target: Tensor[T]): T = {
if (mean == null) mean = Tensor[T]()
if (vari == null) vari = Tensor[T]()
if (expVar == null) expVar = Tensor[T]()
/*
log(sigma) + 0.5 *log(2pi) + 0.5 * (x - mu)^2/sigma^2
input[1] = mu
input[2] = log(sigma^2)
*/
mean.resizeAs(input[Tensor[T]](1)).copy(input(1))
vari.resizeAs(input[Tensor[T]](2)).copy(input(2))
expVar.resizeAs(input[Tensor[T]](2)).copy(input(2))
expVar.exp()
vari.mul(ev.fromType(0.5)).add(ev.fromType(0.5 * math.log(2 * math.Pi)))
vari.add(ev.fromType(0.5), mean.add(ev.fromType(-1), target).pow(ev.fromType(2)).cdiv(expVar))
output = vari.sum()
return output
}
override def updateGradInput(input: Table, target: Tensor[T]): Table = {
if (!gradInput.contains(1)) gradInput(1) = Tensor()
if (!gradInput.contains(2)) gradInput(2) = Tensor()
mean.resizeAs(input[Tensor[T]](1)).copy(input(1))
expVar.resizeAs(input[Tensor[T]](2)).copy(input(2))
expVar.exp()
// -(x-mu)/sigma^2
gradInput[Tensor[T]](1).resizeAs(mean).copy(mean.add(ev.fromType(-1), target))
gradInput[Tensor[T]](1).cdiv(expVar)
// 0.5 - 0.5 * (x - mu)^2 / sigma^2
gradInput(2) = mean.cmul(gradInput[Tensor[T]](1)).mul(ev.fromType(-0.5)).add(ev.fromType(0.5))
gradInput
}
}
object GaussianCriterion {
def apply[@specialized(Float, Double) T: ClassTag]()
(implicit ev: TensorNumeric[T]) : GaussianCriterion[T] = {
new GaussianCriterion[T]()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy