com.intel.analytics.bigdl.nn.KLDCriterion.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.AbstractCriterion
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{T, Table}
import scala.reflect.ClassTag
/**
* Computes the KL-divergence of the input normal distribution to a standard normal distribution.
* The input has to be a table. The first element of input is the mean of the distribution,
* the second element of input is the log_variance of the distribution. The input distribution is
* assumed to be diagonal.
*
* The mean and log_variance are both assumed to be two dimensional tensors. The first dimension are
* interpreted as batch. The output is the average/sum of each observation.
*/
class KLDCriterion[@specialized(Float, Double) T: ClassTag](
sizeAverage: Boolean = true)(
implicit ev: TensorNumeric[T]) extends AbstractCriterion[Table, Tensor[T], T] {
@transient
private var mean: Tensor[T] = null
@transient
private var logVar: Tensor[T] = null
@transient
private var vars: Tensor[T] = null
override def updateOutput(input: Table, target: Tensor[T]): T = {
if (mean == null) mean = Tensor[T]()
if (logVar == null) logVar = Tensor[T]()
if (vars == null) vars = Tensor[T]()
mean.resizeAs(input[Tensor[T]](1)).copy(input(1))
logVar.resizeAs(input[Tensor[T]](2)).copy(input(2))
val batchSize = if (sizeAverage) mean.size(1) else 1
// Appendix B from VAE paper: -0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
mean.pow(ev.fromType(2))
vars.resizeAs(logVar).copy(logVar).exp()
logVar.add(ev.one).add(ev.fromType(-1), mean).add(ev.fromType(-1), vars)
output = ev.times(ev.fromType(-0.5 / batchSize), logVar.sum())
output
}
override def updateGradInput(input: Table, target: Tensor[T]): Table = {
if (!gradInput.contains(1)) gradInput(1) = Tensor()
if (!gradInput.contains(2)) gradInput(2) = Tensor()
val batchSize = if (sizeAverage) input[Tensor[T]](1).size(1) else 1
// d_L/d_mu = mu
gradInput[Tensor[T]](1).resizeAs(input(1)).copy(input(1)).mul(ev.fromType(1.0 / batchSize))
// d_L/d_sigma = 0.5*(exp(log_sq_sigma)-1)
gradInput[Tensor[T]](2).resizeAs(input(2)).copy(input(2))
gradInput[Tensor[T]](2).exp().add(ev.fromType(-1)).mul(ev.fromType(0.5 / batchSize))
gradInput
}
}
object KLDCriterion {
def apply[@specialized(Float, Double) T: ClassTag](sizeAverage: Boolean = true)(
implicit ev: TensorNumeric[T]): KLDCriterion[T] = {
new KLDCriterion[T](sizeAverage = sizeAverage)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy