com.intel.analytics.bigdl.nn.L1HingeEmbeddingCriterion.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.AbstractCriterion
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.RandomGenerator._
import com.intel.analytics.bigdl.utils.Table
import scala.reflect.ClassTag
/**
* Creates a criterion that measures the loss given an input x = {x1, x2},
* a table of two Tensors, and a label y (1 or -1):
*
* @param margin
*/
@SerialVersionUID(- 1765228642089353823L)
class L1HingeEmbeddingCriterion[@specialized(Float, Double) T: ClassTag](val margin: Double = 1)
(implicit ev: TensorNumeric[T]) extends AbstractCriterion[Table, Tensor[T], T]{
private def mathSign(t: T): T = {
var res = 0
if (ev.isGreater(t, ev.fromType(0))) {
res = 1
} else if (ev.isGreater(ev.fromType(0), t)) {
res = -1
} else {
res = 2 * (Math.floor(RNG.uniform(0, 2)).toInt + 1) - 3
}
ev.fromType(res)
}
override def updateOutput(input: Table, target: Tensor[T]): T = {
require(target.dim() == 1 && target.nElement() == 1,
"L1HingeEmbeddingCriterion.updateOutput: " +
"target should be vector with one element," +
s" target shape [${target.dim()},${target.nElement()}]")
val y = target.valueAt(1)
val input1 = input[Tensor[T]](1)
val input2 = input[Tensor[T]](2)
output = (input1 -input2).abs().sum()
if (y == -1) {
output = ev.max(ev.fromType(0), ev.minus(ev.fromType(margin), output))
}
output
}
override def updateGradInput(input: Table, target: Tensor[T]): Table = {
require(target.dim() == 1 && target.nElement() == 1,
s"L1HingeEmbeddingCriterion.updateOutput:" +
" target should be vector with one element," +
s" target shape [${target.dim()},${target.nElement()}]")
val y = target.valueAt(1)
if (!gradInput.contains(1)) gradInput.insert(1, Tensor[T])
if (!gradInput.contains(2)) gradInput.insert(2, Tensor[T])
val gradInput1 = gradInput[Tensor[T]](1)
val gradInput2 = gradInput[Tensor[T]](2)
val input1 = input[Tensor[T]](1)
val input2 = input[Tensor[T]](2)
gradInput1.resizeAs(input1).copy(input1)
gradInput1.add(ev.fromType(-1), input2)
gradInput2.resizeAs(input2)
val dist = gradInput1.norm(1)
gradInput1.apply1(mathSign)
if (y == -1) {
if (ev.isGreater(dist, ev.fromType(margin))) {
gradInput1.zero()
} else {
gradInput1.mul(ev.fromType(-1))
}
}
gradInput2.zero().add(ev.fromType(-1), gradInput1)
gradInput
}
override def toString(): String = {
s"nn.L1HingeEmbeddingCriterion ($margin)"
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[L1HingeEmbeddingCriterion[T]]
override def equals(other: Any): Boolean = other match {
case that: L1HingeEmbeddingCriterion[T] =>
super.equals(that) &&
(that canEqual this) &&
margin == that.margin
case _ => false
}
override def hashCode(): Int = {
def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
val state = Seq(super.hashCode(), margin)
state.map(getHashCode).foldLeft(0)((a, b) => 31 * a + b)
}
}
object L1HingeEmbeddingCriterion {
def apply[@specialized(Float, Double) T: ClassTag](
margin: Double = 1)(implicit ev: TensorNumeric[T]) : L1HingeEmbeddingCriterion[T] = {
new L1HingeEmbeddingCriterion[T](margin)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy