com.intel.analytics.bigdl.nn.Masking.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* [[Masking]] Use a mask value to skip timesteps for a sequence
*
* @param maskValue mask value
*/
class Masking[T: ClassTag](maskValue: Double = 0.0)
(implicit ev: TensorNumeric[T]) extends TensorModule[T]{
val batchDim = 1
val timeDim = 2
override def updateOutput(input: Tensor[T]): Tensor[T] = {
output.resizeAs(input)
var timeIndex = 1
var batchIndex = 1
val fillValue = ev.fromType(0.0)
while(batchIndex <= input.size(batchDim)) {
val batchInput = input.select(batchDim, batchIndex)
val batchOutput = output.select(batchDim, batchIndex)
while(timeIndex <= input.size(timeDim)) {
val slicedTensor = batchInput.select(timeDim - 1, timeIndex)
if (!slicedTensor.notEqualValue(maskValue)) {
batchOutput.select(timeDim - 1, timeIndex).fill(fillValue)
} else {
batchOutput.select(timeDim - 1, timeIndex).copy(slicedTensor)
}
timeIndex += 1
}
batchIndex += 1
timeIndex = 1
}
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
require(input.isSameSizeAs(gradOutput),
"Input should have the same size as gradOutput" +
s"input size(${input.size().foreach(x => x)})" +
s"gradOutput size(${gradOutput.size().foreach(x => x)})")
gradInput.resizeAs(input)
var timeIndex = 1
var batchIndex = 1
val fillValue = ev.fromType(0.0)
while(batchIndex <= input.size(batchDim)) {
val batchInput = input.select(batchDim, batchIndex)
val batchgradOutput = gradOutput.select(batchDim, batchIndex)
val batchgradInput = gradInput.select(batchDim, batchIndex)
while(timeIndex <= input.size(timeDim)) {
val slicedTensor = batchInput.select(timeDim - 1, timeIndex)
if (!slicedTensor.notEqualValue(maskValue)) {
batchgradInput.select(timeDim - 1, timeIndex).fill(fillValue)
} else {
batchgradInput.select(timeDim - 1, timeIndex).copy(
batchgradOutput.select(timeDim - 1, timeIndex))
}
timeIndex += 1
}
batchIndex += 1
timeIndex = 1
}
gradInput
}
}
object Masking {
def apply[T : ClassTag](maskValue: Double)(implicit ev: TensorNumeric[T]): Masking[T]
= new Masking[T](maskValue)
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy