com.intel.analytics.bigdl.nn.Mul.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{Initializable, TensorModule}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.RandomGenerator._
import com.intel.analytics.bigdl.utils.{T, Table}
import scala.reflect.ClassTag
/**
* multiply a single scalar factor to the incoming data
*/
@SerialVersionUID(7706562484586989118L)
class Mul[T: ClassTag](implicit ev: TensorNumeric[T])
extends TensorModule[T] with Initializable {
val weight = Tensor[T](1)
val gradWeight = Tensor[T](1)
{
val wInit = RandomUniform(-1.0, 1.0)
setInitMethod(wInit)
}
override def reset(): Unit = {
weightInitMethod.init(weight, VariableFormat.ONE_D)
zeroGradParameters()
}
override def updateOutput(input: Tensor[T]): Tensor[T] = {
output.resizeAs(input).copy(input)
output.mul(weight(Array(1)))
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
gradInput.resizeAs(input).zero()
gradInput.add(weight(Array(1)), gradOutput)
gradInput
}
override def accGradParameters(input: Tensor[T], gradOutput: Tensor[T]): Unit = {
if (scaleW != 0) {
gradWeight.add(ev.times(input.dot(gradOutput), ev.fromType[Double](scaleW)))
}
}
override def parameters(): (Array[Tensor[T]], Array[Tensor[T]]) = {
(Array(this.weight), Array(this.gradWeight))
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[Mul[T]]
override def equals(other: Any): Boolean = other match {
case that: Mul[T] =>
super.equals(that) &&
(that canEqual this) &&
weight == that.weight &&
gradWeight == that.gradWeight
case _ => false
}
override def hashCode(): Int = {
def getHashCode(a: Any): Int = if (a == null) 0 else a.hashCode()
val state = Seq(super.hashCode(), weight, gradWeight)
state.map(getHashCode).foldLeft(0)((a, b) => 31 * a + b)
}
}
object Mul {
def apply[@specialized(Float, Double) T: ClassTag]()
(implicit ev: TensorNumeric[T]) : Mul[T] = {
new Mul[T]()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy