All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.intel.analytics.bigdl.nn.NarrowTable.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2016 The BigDL Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.intel.analytics.bigdl.nn

import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{T, Table}

import scala.reflect.ClassTag

/**
 * Creates a module that takes a table as input and outputs the subtable starting at index
 * offset having length elements (defaults to 1 element). The elements can be either
 * a table or a Tensor. If `length` is negative, it means selecting the elements from the
 * offset to element which located at the abs(`length`) to the last element of the input.
 *
 * @param offset the start index of table
 * @param length the length want to select
 */

@SerialVersionUID(8046335768231475724L)
class NarrowTable[T: ClassTag](var offset: Int, val length: Int = 1)
  (implicit ev: TensorNumeric[T]) extends AbstractModule[Table, Table, T]{
  var len = length

  override def updateOutput(input: Table): Table = {
    output = T()
    if (length < 0) {
      len = input.length() - offset + 2 + length
    }

    var i = 1
    while (i <= len) {
      output.insert(i, input(offset + i -1))
      i += 1
    }
    output
  }

  override def updateGradInput(input: Table, gradOutput: Table): Table = {
    gradInput = T()
    if (length < 0) {
      len = input.length() - offset + 2 + length
    }

    var i = 1
    while (i <= gradOutput.length()) {
      gradInput.insert(offset + i - 1, gradOutput(i))
      i += 1
    }

    i = 1
    while (i <= input.length()) {
      if (!gradInput.contains(i)) gradInput(i) = Tensor[T]()
      if ((i < offset) || (i >= (offset + length))) {
        gradInput(i) = Utils.recursiveResizeAs(gradInput(i), input(i))
        Utils.recursiveFill(gradInput(i), 0)
      }
      i += 1
    }
    gradInput
  }

  override def toString(): String = {
    s"${getPrintName}($offset, $length)"
  }

  override def canEqual(other: Any): Boolean = other.isInstanceOf[NarrowTable[T]]

  override def equals(other: Any): Boolean = other match {
    case that: NarrowTable[T] =>
      super.equals(that) &&
        (that canEqual this) &&
        offset == that.offset &&
        length == that.length
    case _ => false
  }

  override def hashCode(): Int = {
    val state = Seq(super.hashCode(), offset, length)
    state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
  }
}

object NarrowTable {
  def apply[@specialized(Float, Double) T: ClassTag](
    offset: Int,
    length: Int = 1)(implicit ev: TensorNumeric[T]) : NarrowTable[T] = {
    new NarrowTable[T](offset, length)
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy