com.intel.analytics.bigdl.nn.NegativeEntropyPenalty.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* Penalize the input multinomial distribution if it has low entropy.
* The input to this layer should be a batch of vector each representing a
* multinomial distribution. The input is typically the output of a softmax layer.
*
* For forward, the output is the same as input and a NegativeEntropy loss of
* the latent state will be calculated each time. For backward,
* gradInput = gradOutput + gradLoss
*
* This can be used in reinforcement learning to discourage the policy from
* collapsing to a single action for a given state, which improves exploration.
* See the A3C paper for more detail (https://arxiv.org/pdf/1602.01783.pdf).
*
* @param beta penalty coefficient
*/
@SerialVersionUID(- 5766252125245927237L)
class NegativeEntropyPenalty[T: ClassTag]
(val beta: Double = 0.01)
(implicit ev: TensorNumeric[T]) extends TensorModule[T] {
var loss: T = ev.fromType(0)
private val buffer = Tensor[T]()
override def updateOutput(input: Tensor[T]): Tensor[T] = {
loss = ev.times(buffer.resizeAs(input)
.copy(input).log().cmul(input).sum(), ev.fromType(beta))
output = input
output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
gradInput.resizeAs(input).copy(input)
.log().add(ev.fromType(1)).mul(ev.fromType(beta))
gradInput.add(gradOutput)
gradInput
}
}
object NegativeEntropyPenalty {
def apply[@specialized(Float, Double) T: ClassTag](beta: Double = 0.01)
(implicit ev: TensorNumeric[T]) : NegativeEntropyPenalty[T] = {
new NegativeEntropyPenalty[T](beta)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy