com.intel.analytics.bigdl.nn.Select.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* A Simple layer selecting an index of the input tensor in the given dimension
*
* @param dimension the dimension to select
* @param index the index of the dimension to be selected
*/
@SerialVersionUID(1581502108010704056L)
class Select[T: ClassTag](
dimension: Int,
index: Int
)(implicit ev: TensorNumeric[T])
extends TensorModule[T] {
def getPositiveDimAndIndex(input: Tensor[T]): (Int, Int) = {
val dim = if (dimension < 0) {
input.dim() + dimension + 1
} else {
dimension
}
val index = if (this.index < 0) {
input.size(dim) + this.index + 1
} else {
this.index
}
(dim, index)
}
override def updateOutput(input: Tensor[T]): Tensor[T] = {
val (dim, index) = getPositiveDimAndIndex(input)
if ((dim == 2) && (input.dim() > 2)) {
Recurrent.selectCopy(input, index, this.output)
} else {
val output = input.select(dim, index)
this.output.resizeAs(output)
this.output.copy(output)
}
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
val (dim, index) = getPositiveDimAndIndex(input)
gradInput.resizeAs(input)
gradInput.zero()
if ((dim == 2) && (gradInput.dim() > 2)) {
Recurrent.copyToIndex(gradOutput, gradInput, index)
} else {
gradInput.select(dim, index).copy(gradOutput)
}
gradInput
}
override def toString: String = s"nn.Select"
}
object Select {
def apply[@specialized(Float, Double) T: ClassTag](
dimension: Int,
index: Int)(implicit ev: TensorNumeric[T]) : Select[T] = {
new Select[T](dimension, index)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy