com.intel.analytics.bigdl.nn.SoftMarginCriterion.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.TensorCriterion
import com.intel.analytics.bigdl.tensor._
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
* Creates a criterion that optimizes a two-class classification logistic loss
* between input x (a Tensor of dimension 1) and output y (which is a tensor
* containing either 1s or -1s).
*
* loss(x, y) = sum_i (log(1 + exp(-y[i]*x[i]))) / x:nElement()
*
* @param sizeAverage The normalization by the number of elements in the input
* can be disabled by setting
*/
@SerialVersionUID(7573077918688542348L)
class SoftMarginCriterion[@specialized(Float, Double) T: ClassTag](var sizeAverage: Boolean = true)
(implicit ev: TensorNumeric[T])
extends TensorCriterion[T] {
def isSizeAverage: Boolean = sizeAverage
def setSizeAverage(sizeAverage: Boolean): this.type = {
this.sizeAverage = sizeAverage
this
}
// TODO: replace apply for performance optimization
override def updateOutput(input: Tensor[T], target: Tensor[T]): T = {
require(input.isSameSizeAs(target), "The input should have the same size as target" +
s"input size ${input.nElement()}, target size ${target.nElement()}")
var sum = ev.zero
val func2 = new TensorFunc4[T] {
override def apply(in: Array[T], index1: Int, tar: Array[T], index2: Int): Unit = {
val z = ev.log(ev.plus(ev.one, ev.exp(ev.negative(ev.times(in(index1), tar(index2))))))
sum = ev.plus(sum, z)
}
}
DenseTensorApply.apply2[T](input, target, func2)
if (sizeAverage) {
sum = ev.divide(sum, ev.fromType[Int](input.nElement()))
}
output = sum
output
}
// TODO: replace apply for performance optimization
override def updateGradInput(input: Tensor[T], target: Tensor[T]): Tensor[T] = {
require(input.isSameSizeAs(target), "The input should have the same size as target" +
s"input size ${input.nElement()}, target size ${target.nElement()}")
val norm = if (sizeAverage) {
ev.divide(ev.one, ev.fromType[Int](input.nElement()))
} else {
ev.one
}
gradInput.resizeAs(input)
val func = new TensorFunc6[T] {
override def apply (gradInput: Array[T], offset1: Int, input: Array[T],
offset2: Int, target: Array[T], offset3: Int): Unit = {
val z = ev.exp(ev.negative(ev.times(target(offset1), input(offset2))))
gradInput(offset1) = ev.divide(
ev.negative(ev.times(norm, ev.times(target(offset3), z))), ev.plus(ev.one, z))
}
}
DenseTensorApply.apply3[T](gradInput, input, target, func)
gradInput
}
override def canEqual(other: Any): Boolean = other.isInstanceOf[SoftMarginCriterion[T]]
override def equals(other: Any): Boolean = other match {
case that: SoftMarginCriterion[T] =>
(that canEqual this) &&
gradInput == that.gradInput &&
sizeAverage == that.sizeAverage
case _ => false
}
override def hashCode(): Int = {
def getHashcode(state: Any): Int = if (state == null) 0 else state.hashCode()
val state = Seq(gradInput, sizeAverage)
state.map(getHashcode).foldLeft(0)((a, b) => 31 * a + b)
}
}
object SoftMarginCriterion {
def apply[@specialized(Float, Double) T: ClassTag](sizeAverage: Boolean = true)
(implicit ev: TensorNumeric[T]): SoftMarginCriterion[T] = {
new SoftMarginCriterion(sizeAverage)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy