com.intel.analytics.bigdl.nn.SparseJoinTable.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.tensor.{DenseTensor, SparseTensor, Tensor}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.{Engine, Table}
import scala.concurrent.Future
import scala.reflect.ClassTag
/**
* :: Experimental ::
*
* Sparse version of JoinTable. Backward just pass the origin gradOutput back to
* the next layers without split. So this layer may just works in Wide&Deep like models.
*
* @param dimension the dimension to join.
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now
*/
class SparseJoinTable[T: ClassTag] (
val dimension: Int)(implicit ev: TensorNumeric[T])
extends AbstractModule[Table, Tensor[T], T] {
private var results: Array[Future[Unit]] = null
output = Tensor.sparse(Array(1, 1), 1)
var size: Array[Int] = null
override def updateOutput(input: Table): Tensor[T] = {
var nElements = 0
var i = 1
while (i <= input.length()) {
val currentOutput: Tensor[T] = input(i)
if (i == 1) {
size = currentOutput.size()
} else {
size(dimension - 1) += currentOutput.size(dimension)
}
nElements += currentOutput.nElement()
i += 1
}
output.resize(size, nElements)
Tensor.sparseConcat(2, input, output)
output
}
override def updateGradInput(input: Table, gradOutput: Tensor[T]): Table = {
var i = 1
while (i <= input.length()) {
gradInput(i) = gradOutput
i += 1
}
gradInput
}
override def clearState(): this.type = {
super.clearState()
size = null
results = null
this
}
override def toString: String = s"nn.SparseJoinTable($dimension)"
override def canEqual(other: Any): Boolean = other.isInstanceOf[SparseJoinTable[T]]
override def equals(other: Any): Boolean = other match {
case that: SparseJoinTable[T] =>
super.equals(that) &&
(that canEqual this) &&
dimension == that.dimension
case _ => false
}
override def hashCode(): Int = {
val state = Seq(super.hashCode(), dimension)
state.map(_.hashCode()).foldLeft(0)((a, b) => 31 * a + b)
}
}
object SparseJoinTable {
def apply[@specialized(Float, Double) T: ClassTag](
dimension: Int)(implicit ev: TensorNumeric[T]) : SparseJoinTable[T] = {
new SparseJoinTable[T](dimension)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy