com.intel.analytics.bigdl.nn.SpatialCrossMapLRN.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{DataFormat, TensorModule}
import com.intel.analytics.bigdl.tensor.{FloatType, Tensor}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Engine
import scala.concurrent.Future
import scala.reflect._
/**
* Applies Spatial Local Response Normalization between different feature maps.
* The operation implemented is:
* x_f
* y_f = -------------------------------------------------
* (k+(alpha/size)* sum_{l=l1 to l2} (x_l^2^))^beta^
*
* where x_f is the input at spatial locations h,w (not shown for simplicity) and feature map f,
* l1 corresponds to max(0,f-ceil(size/2)) and l2 to min(F, f-ceil(size/2) + size).
* Here, F is the number of feature maps.
* @param size the number of channels to sum over (for cross channel LRN)
* @param alpha the scaling parameter
* @param beta the exponent
* @param k
*/
@SerialVersionUID(3641570491004969703L)
class SpatialCrossMapLRN[T: ClassTag]
(val size: Int = 5, val alpha: Double = 1.0, val beta: Double = 0.75, val k: Double = 1.0,
val format: DataFormat = DataFormat.NCHW)(
implicit ev: TensorNumeric[T]) extends TensorModule[T] {
@transient
private var scale: Tensor[T] = null
@transient
private var paddedRatio: Tensor[T] = null
@transient
private var accumRatio: Tensor[T] = null
@transient
private var results: Array[Future[Unit]] = null
require(size % 2 == 1, "LRN only supports odd values for size" +
s"size $size")
val prePad = (size - 1) / 2
override def equals(obj: Any): Boolean = {
if (!super.equals(obj)) {
return false
}
if (!obj.isInstanceOf[SpatialCrossMapLRN[T]]) {
return false
}
val other = obj.asInstanceOf[SpatialCrossMapLRN[T]]
if (this.eq(other)) {
return true
}
size == other.size &&
alpha == other.alpha && beta == other.beta && k == other.k
}
override def hashCode(): Int = {
val seed = 37
var hash = super.hashCode()
hash = hash * seed + size.hashCode()
hash = hash * seed + alpha.hashCode()
hash = hash * seed + beta.hashCode()
hash = hash * seed + k.hashCode()
hash
}
override def toString(): String = {
s"${getPrintName}($size, $alpha, $beta, $k)"
}
override def updateOutput(input: Tensor[T]): Tensor[T] = {
require(input.nDimension() == 4, "Input must have 4 dimensions, corresponding to " +
"(batch, channels, height, width)" +
s"input dimension ${input.nDimension()}")
require(input.isContiguous(), "Input is not contiguous")
output.resizeAs(input)
if (scale == null) {
scale = Tensor[T]().resizeAs(input)
}
scale.resizeAs(input)
val batchNum = input.size(1)
if (results == null || results.length != batchNum) {
results = new Array[Future[Unit]](batchNum)
}
var b = 1
while (b <= batchNum) {
val _b = b
results(b - 1) = Engine.model.invoke(() => {
if (format == DataFormat.NCHW) {
SpatialCrossMapLRN.forwardFrameNCHW(input.select(1, _b), output.select(1, _b),
scale.select(1, _b), alpha, size, beta, k)
} else {
if (ev.getType() == FloatType) {
SpatialCrossMapLRN.forwardFrameNHWCFloat(
input.select(1, _b).asInstanceOf[Tensor[Float]],
output.select(1, _b).asInstanceOf[Tensor[Float]],
alpha, size, beta, k)
} else {
throw new NotImplementedError(s"Not support numeric type ${ev.getType()} in NHWC")
}
}
})
b += 1
}
Engine.model.sync(results)
this.output
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
require(input.nDimension() == 4, "Input must have 4 dimensions, corresponding to " +
"(batch, channels, height, width)" +
s"inputdimension ${input.nDimension()}")
require(gradOutput.isContiguous(), "gradOutput is not contiguous")
val batchNum = input.size(1)
val channel = input.size(2)
val height = input.size(3)
val width = input.size(4)
if (paddedRatio == null) {
paddedRatio = Tensor[T]().resize(batchNum, channel + size - 1, height, width)
}
if (accumRatio == null) {
accumRatio = Tensor[T]().resize(batchNum, height, width)
}
gradInput.resizeAs(input)
if (results == null || results.length != batchNum) {
results = new Array[Future[Unit]](batchNum)
}
var b = 1
while (b <= batchNum) {
val _b = b
results(b - 1) = Engine.model.invoke(() => {
if (format == DataFormat.NCHW) {
SpatialCrossMapLRN.backwardFrameNCHW(input.select(1, _b), output.select(1, _b),
scale.select(1, _b), gradOutput.select(1, _b), gradInput.select(1, _b),
paddedRatio.select(1, _b), accumRatio.select(1, _b), alpha, size, beta)
} else {
if (ev.getType() == FloatType) {
SpatialCrossMapLRN.backwardFrameNHWCFloat(
gradOutput.select(1, _b).asInstanceOf[Tensor[Float]],
input.select(1, _b).asInstanceOf[Tensor[Float]],
gradInput.select(1, _b).asInstanceOf[Tensor[Float]],
output.select(1, _b).asInstanceOf[Tensor[Float]],
alpha, size, beta, k)
} else {
throw new NotImplementedError(s"Not support numeric type ${ev.getType()} in NHWC")
}
}
})
b += 1
}
Engine.model.sync(results)
this.gradInput
}
}
object SpatialCrossMapLRN {
def apply[@specialized(Float, Double) T: ClassTag](
size: Int = 5,
alpha: Double = 1.0,
beta: Double = 0.75,
k: Double = 1.0,
format: DataFormat = DataFormat.NCHW)
(implicit ev: TensorNumeric[T]) : SpatialCrossMapLRN[T] = {
new SpatialCrossMapLRN[T](size, alpha, beta, k, format)
}
private[bigdl] def forwardFrameNCHW[T](input: Tensor[T], output: Tensor[T],
scale: Tensor[T], alpha: Double, size: Int, beta: Double, k: Double)
(implicit ev: TensorNumeric[T]): Unit = {
val channels = input.size(1)
val inputSquare = output
inputSquare.pow(input, ev.fromType(2))
val prePad = (size - 1) / 2 + 1
val prePadCrop = if (prePad > channels) channels else prePad
val scaleFirst = scale.select(1, 1).zero()
var c = 1
while (c <= prePadCrop) {
scaleFirst.add(inputSquare.select(1, c))
c += 1
}
c = 2
while (c <= channels) {
val scalePrevious = scale.select(1, c - 1)
val scaleCurrent = scale.select(1, c)
scaleCurrent.copy(scalePrevious)
if (c < channels - prePad + 2) {
val squareNext = inputSquare.select(1, c + prePad - 1)
scaleCurrent.add(ev.fromType(1), squareNext)
}
if (c > prePad) {
val squarePrevious = inputSquare.select(1, c - prePad)
scaleCurrent.add(ev.fromType(-1), squarePrevious)
}
c += 1
}
scale.mul(ev.fromType(alpha / size)).add(ev.fromType(k))
output.pow(scale, ev.fromType(-beta))
output.cmul(input)
}
def forwardFrameNHWCFloat(
input: Tensor[Float],
output: Tensor[Float],
alpha: Double,
size: Int,
beta: Double,
k: Double
): Unit = {
require(input.isContiguous(), "input of LRN for NHWC should be contiguous")
require(output.isContiguous(), "output of LRN for NHWC should be contiguous")
val channel = input.size(3)
val inputOffset = input.storageOffset() - 1
val inputArray = input.storage().array()
val outputOffset = output.storageOffset() - 1
val outputArray = output.storage().array()
val nElement = output.nElement()
var l2sum = 0f
var i = 0
while(i < nElement) {
val p = i % channel
if (p == 0) {
var c = 0
l2sum = 0
val depth = Math.min((size - 1) / 2 + 1, channel)
while (c < depth) {
val x = inputArray(inputOffset + i + c)
l2sum += x * x
c += 1
}
} else {
if (p + (size - 1) / 2 < channel) {
val x = inputArray(inputOffset + i + (size - 1) / 2)
l2sum += x * x
}
if (p - (size - 1) / 2 > 0) {
val x = inputArray(inputOffset + i - (size - 1) / 2 - 1)
l2sum -= x * x
}
}
outputArray(outputOffset + i) = inputArray(inputOffset + i) *
Math.pow(k + alpha / size * l2sum, -beta).toFloat
i += 1
}
}
private def backwardFrameNCHW[T](
input: Tensor[T], output: Tensor[T], scale: Tensor[T],
gradOutput: Tensor[T], gradInput: Tensor[T], paddedRatio: Tensor[T],
accumRatio: Tensor[T], alpha: Double, size: Int, beta: Double)
(implicit ev: TensorNumeric[T]): Unit = {
val channels = input.size(1)
val inversePrePad = size - (size - 1) / 2
val cacheRatioValue = ev.fromType(-2 * alpha * beta / size)
gradInput.pow(scale, ev.fromType(-beta)).cmul(gradOutput)
paddedRatio.zero()
val paddedRatioCenter = paddedRatio.narrow(1, inversePrePad, channels)
paddedRatioCenter.cmul(gradOutput, output).cdiv(scale)
accumRatio.sum(paddedRatio.narrow(1, 1, size - 1), 1)
var c = 1
while (c <= channels) {
accumRatio.add(paddedRatio.select(1, c + size - 1))
gradInput.select(1, c).addcmul(cacheRatioValue, input.select(1, c), accumRatio)
accumRatio.add(ev.fromType(-1), paddedRatio.select(1, c))
c += 1
}
}
private[bigdl] def backwardFrameNHWCFloat(
gradOutput: Tensor[Float],
input: Tensor[Float],
gradInput: Tensor[Float],
output: Tensor[Float],
alpha: Double,
size: Int,
beta: Double,
k: Double
): Unit = {
gradInput.copy(input)
val channel = input.size(3)
val inputOffset = input.storageOffset() - 1
val inputArray = input.storage().array()
val outputOffset = output.storageOffset() - 1
val outputArray = output.storage().array()
val gradOutputOffset = gradOutput.storageOffset() - 1
val gradOutputArray = gradOutput.storage().array()
val gradInputOffset = gradInput.storageOffset() - 1
val gradInputArray = gradInput.storage().array()
val nElement = gradInput.nElement()
var glsum = 0f
var i = 0
while(i < nElement) {
val p = i % channel
if (p == 0) {
var c = 0
glsum = 0
val depth = Math.min((size - 1) / 2 + 1, channel)
while (c < depth) {
val x = inputArray(inputOffset + i + c)
val g = gradOutputArray(gradOutputOffset + i + c)
val o = outputArray(outputOffset + i + c)
glsum += g * Math.pow(o / x, (beta + 1) / beta).toFloat * x
c += 1
}
} else {
if (p + (size - 1) / 2 < channel) {
val x = inputArray(inputOffset + i + (size - 1) / 2)
val g = gradOutputArray(gradOutputOffset + i + (size - 1) / 2)
val o = outputArray(outputOffset + i + (size - 1) / 2)
glsum += g * Math.pow(o / x, (beta + 1) / beta).toFloat * x
}
if (p - (size - 1) / 2 - 1>= 0) {
val x = inputArray(inputOffset + i - (size - 1) / 2 - 1)
val g = gradOutputArray(gradOutputOffset + i - (size - 1) / 2 - 1)
val o = outputArray(outputOffset + i - (size - 1) / 2 - 1)
glsum -= g * Math.pow(o / x, (beta + 1) / beta).toFloat * x
}
}
val x = inputArray(inputOffset + i)
val g = gradOutputArray(gradOutputOffset + i)
val o = outputArray(outputOffset + i)
gradInputArray(gradInputOffset + i) =
(o / x * g - 2 * beta * alpha / size * x * glsum).toFloat
i += 1
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy