com.intel.analytics.bigdl.nn.SpatialDropout2D.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn
import com.intel.analytics.bigdl.nn.abstractnn.{DataFormat, IdentityOutputShape, TensorModule}
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
/**
*
* This version performs the same function as Dropout, however it drops
* entire 2D feature maps instead of individual elements. If adjacent pixels
* within feature maps are strongly correlated (as is normally the case in
* early convolution layers) then regular dropout will not regularize the
* activations and will otherwise just result in an effective learning rate
* decrease. In this case, SpatialDropout2D will help promote independence
* between feature maps and should be used instead.
*
* @param initP the probability p
* @param format 'NCHW' or 'NHWC'.
In 'NCHW' mode, the channels dimension (the depth)
is at index 1, in 'NHWC' mode is it at index 4.
* @tparam T The numeric type in the criterion, usually which are [[Float]] or [[Double]]
*/
@SerialVersionUID(- 4636332259181125718L)
class SpatialDropout2D[T: ClassTag](
val initP: Double = 0.5,
val format: DataFormat = DataFormat.NCHW)(
implicit ev: TensorNumeric[T]) extends TensorModule[T] {
var p = initP
var noise = Tensor[T]()
override def updateOutput(input: Tensor[T]): Tensor[T] = {
this.output.resizeAs(input).copy(input)
if (train) {
val inputSize = input.size()
if (input.dim() == 3) {
if (format == DataFormat.NCHW) {
noise.resize(Array(inputSize(0), 1, 1))
} else if (format == DataFormat.NHWC) {
noise.resize(Array(1, 1, inputSize(2)))
} else {
throw new RuntimeException("SpatialDropout2D:" +
" DataFormat: " + format + " is not supported")
}
} else if (input.dim() == 4) {
if (format == DataFormat.NCHW) {
noise.resize(Array(inputSize(0), inputSize(1), 1, 1))
} else if (format == DataFormat.NHWC) {
noise.resize(Array(inputSize(0), 1, 1, inputSize(3)))
} else {
throw new RuntimeException("SpatialDropout2D: " +
"DataFormat: " + format + " is not supported")
}
} else {
throw new RuntimeException("SpatialDropout2D: " +
"Input must be 4D or 3D")
}
noise.bernoulli(1 - p)
output.cmul(noise.expandAs(input))
} else {
this.output.mul(ev.fromType[Double](1 - p))
}
}
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
if (train) {
gradInput.resizeAs(gradOutput).copy(gradOutput)
gradInput.cmul(noise.expandAs(input))
} else {
throw new RuntimeException("SpatialDropout2D: " +
"backprop only defined while training")
}
this.gradInput
}
override def clearState(): this.type = {
super.clearState()
noise.set()
this
}
override def toString(): String = {
s"${getPrintName}($p)"
}
}
object SpatialDropout2D {
def apply[T: ClassTag](
initP: Double = 0.5,
format: DataFormat = DataFormat.NCHW)(implicit ev: TensorNumeric[T]) : SpatialDropout2D[T] = {
new SpatialDropout2D[T](initP, format)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy