com.intel.analytics.bigdl.nn.keras.KerasUtils.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.keras
import com.intel.analytics.bigdl.Criterion
import com.intel.analytics.bigdl.nn._
import com.intel.analytics.bigdl.nn.abstractnn.{AbstractModule, DataFormat}
import com.intel.analytics.bigdl.optim._
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import scala.reflect.ClassTag
object KerasUtils {
private[keras] def getPadsFromBorderMode(borderMode: String = "valid"): (Int, Int) = {
if (borderMode == "same") {
// padH, padW
(-1, -1)
} else {
(0, 0)
}
}
private[bigdl] def getInitMethod(init: String): InitializationMethod = {
init.toLowerCase() match {
case "glorot_uniform" => Xavier
case "one" => Ones
case "zero" => Zeros
case "uniform" => RandomUniform(-0.05, 0.05)
case "normal" => RandomNormal(0.0, 0.05)
case _ => throw new IllegalArgumentException(s"Unsupported initialization method: " +
s"${init.toLowerCase()}")
}
}
private[bigdl] def getKerasActivation[T : ClassTag] (activation: String)
(implicit ev: TensorNumeric[T]): KerasLayer[Tensor[T], Tensor[T], T] = {
if (activation == null) { return null }
if (activation.toLowerCase() == "softmax") {
SoftMax[T]()
} else {
val torchActivation = getTorchActivation(activation)
new KerasIdentityWrapper[T](torchActivation)
.asInstanceOf[KerasLayer[Tensor[T], Tensor[T], T]]
}
}
private[keras] def getTorchActivation[T : ClassTag] (activation: String)
(implicit ev: TensorNumeric[T]): AbstractModule[Tensor[T], Tensor[T], T] = {
if (activation == null) null
else {
activation.toLowerCase() match {
case "tanh" => Tanh[T]()
case "sigmoid" => Sigmoid[T]()
case "relu" => ReLU[T]()
case "softmax" =>
com.intel.analytics.bigdl.nn.SoftMax[T]()
case "softplus" => SoftPlus[T]()
case "softsign" => SoftSign[T]()
case "hard_sigmoid" => HardSigmoid[T]()
case _ => throw new IllegalArgumentException(s"Invalid activation: " +
s"${activation.toLowerCase}. Only simple activations can be constructed using string")
}
}
}
private[keras] def computeConvOutputLength(
inputLength: Int,
filterSize: Int,
borderMode: String,
stride: Int,
dilation: Int = 1): Int = {
val dilatedFilterSize = filterSize + (filterSize - 1) * (dilation - 1)
val outputLength = borderMode match {
case "valid" => inputLength - dilatedFilterSize + 1
case "same" => inputLength
}
(outputLength + stride - 1) / stride
}
private[keras] def getPadsFromBorderMode3D(
borderMode: String = "valid"): (Int, Int, Int) = {
if (borderMode == "same") {
// padT, padH, padW
(-1, -1, -1)
} else {
(0, 0, 0)
}
}
private[bigdl] def toBigDLFormat(dimOrdering: String): DataFormat = {
require(dimOrdering.toLowerCase() == "tf" || dimOrdering.toLowerCase() == "th",
s"Dim ordering must be either tf or th, but got ${dimOrdering.toLowerCase()}")
dimOrdering.toLowerCase() match {
case "tf" => DataFormat.NHWC
case "th" => DataFormat.NCHW
}
}
private[bigdl] def toBigDLFormat5D(dimOrdering: String): String = {
require(dimOrdering.toLowerCase() == "tf" || dimOrdering.toLowerCase() == "th",
s"Dim ordering must be either tf or th, but got ${dimOrdering.toLowerCase()}")
dimOrdering.toLowerCase() match {
case "tf" => "CHANNEL_LAST"
case "th" => "CHANNEL_FIRST"
}
}
private[keras] def toBigDLCriterion[T : ClassTag](loss: String)
(implicit ev: TensorNumeric[T]): Criterion[T] = {
loss.toLowerCase() match {
case "binary_crossentropy" => BCECriterion[T]()
case "categorical_crossentropy" => CategoricalCrossEntropy[T]()
case "mse" => MSECriterion[T]()
case "mean_squared_error" => MSECriterion[T]()
case "mae" => AbsCriterion[T]()
case "mean_absolute_error" => AbsCriterion[T]()
case "hinge" => MarginCriterion[T]()
case "mape" => MeanAbsolutePercentageCriterion[T]()
case "mean_absolute_percentage_error" => MeanAbsolutePercentageCriterion[T]()
case "msle" => MeanSquaredLogarithmicCriterion[T]()
case "mean_squared_logarithmic_error" => MeanSquaredLogarithmicCriterion[T]()
case "squared_hinge" => MarginCriterion[T](squared = true)
case "sparse_categorical_crossentropy" => ClassNLLCriterion[T](logProbAsInput = false)
case "kld" => KullbackLeiblerDivergenceCriterion[T]()
case "kullback_leibler_divergence" => KullbackLeiblerDivergenceCriterion[T]()
case "cosine_proximity" => CosineProximityCriterion[T]()
case "poisson" => PoissonCriterion[T]()
case _ => throw new IllegalArgumentException(s"Invalid loss: ${loss.toLowerCase()}")
}
}
private[keras] def toBigDLOptimMethod[T: ClassTag](optimMethod: String)
(implicit ev: TensorNumeric[T]): OptimMethod[T] = {
optimMethod.toLowerCase() match {
case "sgd" => new SGD[T](learningRate = 0.01)
case "rmsprop" => new RMSprop[T](learningRate = 0.001, decayRate = 0.9)
case "adamax" => new Adamax[T](Epsilon = 1e-8)
case "adagrad" => new Adagrad[T](learningRate = 0.01)
case "adadelta" => new Adadelta[T](decayRate = 0.95, Epsilon = 1e-8)
case "adam" => new Adam[T]()
}
}
private[keras] def toBigDLMetrics[T: ClassTag](metrics: Array[String])
(implicit ev: TensorNumeric[T]): Array[ValidationMethod[T]] = {
if (metrics == null) {
null
}
else if (metrics.sameElements(Array("accuracy"))) {
Array(new Top1Accuracy[T]())
}
else {
throw new IllegalArgumentException(s"Unsupported metrics: ${metrics.mkString(", ")}")
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy