com.intel.analytics.bigdl.nn.keras.MaxoutDense.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.keras
import com.intel.analytics.bigdl.nn.abstractnn.AbstractModule
import com.intel.analytics.bigdl.nn.Maxout
import com.intel.analytics.bigdl.optim.Regularizer
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Shape
import scala.reflect.ClassTag
/**
* A dense maxout layer that takes the element-wise maximum of linear layers.
* This allows the layer to learn a convex, piecewise linear activation function over the inputs.
* The input of this layer should be 2D.
*
* When you use this layer as the first layer of a model, you need to provide the argument
* inputShape (a Single Shape, does not include the batch dimension).
*
* @param outputDim The size of output dimension.
* @param nbFeature Number of Dense layers to use internally. Integer. Default is 4.
* @param wRegularizer An instance of [[Regularizer]], (eg. L1 or L2 regularization),
* applied to the main weights matrices. Default is null.
* @param bRegularizer An instance of [[Regularizer]], applied to the bias. Default is null.
* @param bias Whether to include a bias (i.e. make the layer affine rather than linear).
* Default is true.
* @tparam T Numeric type of parameter(e.g. weight, bias). Only support float/double now.
*/
class MaxoutDense[T: ClassTag](
val outputDim: Int,
val nbFeature: Int = 4,
val wRegularizer: Regularizer[T] = null,
var bRegularizer: Regularizer[T] = null,
val bias: Boolean = true,
val inputShape: Shape = null)(implicit ev: TensorNumeric[T])
extends KerasLayer[Tensor[T], Tensor[T], T](KerasLayer.addBatch(inputShape)) {
override def doBuild(inputShape: Shape): AbstractModule[Tensor[T], Tensor[T], T] = {
val input = inputShape.toSingle().toArray
val layer = Maxout(
inputSize = input(1),
outputSize = outputDim,
maxoutNumber = nbFeature,
withBias = bias,
wRegularizer = wRegularizer,
bRegularizer = bRegularizer)
layer.asInstanceOf[AbstractModule[Tensor[T], Tensor[T], T]]
}
}
object MaxoutDense {
def apply[@specialized(Float, Double) T: ClassTag](
outputDim: Int,
nbFeature: Int = 4,
wRegularizer: Regularizer[T] = null,
bRegularizer: Regularizer[T] = null,
bias: Boolean = true,
inputShape: Shape = null)(implicit ev: TensorNumeric[T]): MaxoutDense[T] = {
new MaxoutDense[T](outputDim, nbFeature, wRegularizer, bRegularizer, bias, inputShape)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy