com.intel.analytics.bigdl.nn.mkldnn.Dropout.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.mkldnn
import com.intel.analytics.bigdl.mkl.{Memory, MklDnn}
import com.intel.analytics.bigdl.nn.abstractnn.Activity
import com.intel.analytics.bigdl.nn.{Dropout => NNDropout}
import com.intel.analytics.bigdl.tensor.DnnTensor
class Dropout(
val initP: Double = 0.5,
val inplace: Boolean = false,
var scale: Boolean = true) extends MklDnnLayer {
private val dropout = NNDropout[Float](initP, inplace, scale)
private var mask: DnnTensor[Float] = _
private def format(shape: Array[Int], layout: Int): Int = {
shape.length match {
case 2 => Memory.Format.nc
// reminder: for 3 dimension, we should keep original layout (ntc or tnc)
case 3 => layout
case 4 => Memory.Format.nchw
case _ => throw new UnsupportedOperationException(s"${getName()} unsupported input shape")
}
}
override private[mkldnn] def initFwdPrimitives(inputs: Array[MemoryData], phase: Phase) = {
_inputFormats = inputs.map(x => HeapData(x.shape, format(x.shape, x.layout)))
_outputFormats = inputs.map(x => HeapData(x.shape, format(x.shape, x.layout)))
// we should genereate the primitives here, otherwise the initTensor can't get the padding shape
_outputFormats.map(_.getPrimitive(runtime))
output = initTensor(_outputFormats.head)
(_inputFormats, _outputFormats)
}
override private[mkldnn] def initBwdPrimitives(grad: Array[MemoryData], phase: Phase) = {
_gradOutputFormats = grad.map(x => HeapData(x.shape, format(x.shape, x.layout)))
_gradOutputFormatsForWeight = grad.map(x => HeapData(x.shape, format(x.shape, x.layout)))
_gradInputFormats = grad.map(x => HeapData(x.shape, format(x.shape, x.layout)))
_gradInputFormats.map(_.getPrimitive(runtime))
gradInput = initTensor(_gradInputFormats.head)
(_gradOutputFormats, _gradInputFormats)
}
override def updateOutput(input: Activity): Activity = {
if (isTraining()) {
output = dropout.updateOutput(input)
} else {
output.toTensor[Float].copy(input.toTensor[Float])
}
output
}
override def updateGradInput(input: Activity, gradOutput: Activity): Activity = {
gradInput = dropout.updateGradInput(input, gradOutput)
gradInput
}
override def clearState(): this.type = {
dropout.clearState()
this
}
override def toString(): String = {
s"mkldnn.Dropout"
}
}
object Dropout {
def apply(
initP: Double = 0.5,
inplace: Boolean = false,
scale: Boolean = true) : Dropout = {
new Dropout(initP, inplace, scale)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy