com.intel.analytics.bigdl.nn.onnx.Shape.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.onnx
import com.intel.analytics.bigdl.nn.abstractnn.TensorModule
import scala.reflect.ClassTag
import com.intel.analytics.bigdl.nn.ops.Operation
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
/**
* A layer which takes a tensor as input and outputs an 1D tensor containing the shape of the input.
* @param `classTag$T`
* @param ev
* @tparam T The numeric type in this module parameters
*/
private[bigdl] class Shape[T: ClassTag](implicit ev: TensorNumeric[T])
extends TensorModule[T] {
override def updateOutput(input: Tensor[T]): Tensor[T] = {
val dimSize = input.nDimension()
output = Tensor[T](dimSize)
(1 to dimSize).foreach(i => {
output.setValue(i, ev.fromType(input.size(i)))
})
output
}
// Shape if a constant layer,
// which means Output does not depend on Weight which gets updated by Gradient
override def updateGradInput(input: Tensor[T], gradOutput: Tensor[T]): Tensor[T] = {
gradInput.resizeAs(input)
gradInput.zero()
gradInput
}
}
object Shape {
def apply[T: ClassTag]()(
implicit ev: TensorNumeric[T]): Shape[T] = {
new Shape[T]()
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy