com.intel.analytics.bigdl.nn.ops.CrossEntropy.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.nn.ops
import com.intel.analytics.bigdl.tensor.Tensor
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric
import com.intel.analytics.bigdl.utils.Table
import scala.reflect.ClassTag
/**
* Compute the cross entropy loss and the gradients.
* @param ev$1
* @param ev
* @tparam T Numeric type. Only support float/double now
*/
class CrossEntropy[T: ClassTag](implicit ev: TensorNumeric[T])
extends Operation[Table, Table, T] {
private var buffer: Tensor[T] = _
private var prob: Tensor[T] = _
override def updateOutput(input: Table): Table = {
val modelOutput = input[Tensor[T]](1)
val label = input[Tensor[T]](2)
require(modelOutput.nDimension() == 2, "CrossEntropy need a 2D input")
require(modelOutput.isSameSizeAs(label), s"size not match output" +
s"(${modelOutput.size().mkString("x")}) label(${label.size().mkString("x")})")
val batch = modelOutput.size(1)
if (!output.contains(1)) {
output(1) = Tensor[T](batch)
output(2) = Tensor[T]().resizeAs(modelOutput)
}
val loss = output[Tensor[T]](1)
val grad = output[Tensor[T]](2)
var i = 1
while(i <= batch) {
val (l, g) = xEntropy(modelOutput.select(1, i), label.select(1, i))
loss.setValue(i, l)
grad.select(1, i).copy(g)
i += 1
}
output
}
private def xEntropy(logits: Tensor[T], label: Tensor[T]): (T, Tensor[T]) = {
if (buffer == null) {
buffer = Tensor[T]().resizeAs(logits)
prob = Tensor[T]().resizeAs(logits)
}
// max_logits
val max = logits.max()
// logits - max_logits
buffer.fill(ev.negative(max))
buffer.add(logits)
// exp(logits - max_logits)
buffer.exp()
prob.copy(buffer)
// sum(exp(logits - max_logits))))
val sum = buffer.sum()
// log(sum(exp(logits - max_logits)))))
val logSum = ev.log(sum)
// (logits - max_logits)
buffer.fill(ev.negative(max))
buffer.add(logits)
prob.div(sum)
// (logits - max_logits) - log(sum(exp(logits - max_logits)))
buffer.add(ev.negative(logSum))
// sum(-labels *((logits - max_logits) - log(sum(exp(logits - max_logits)))))
(ev.negative(buffer.cmul(label).sum()), prob.add(ev.negative(ev.one), label))
}
}
object CrossEntropy {
def apply[T: ClassTag]()(implicit ev: TensorNumeric[T]): CrossEntropy[T] =
new CrossEntropy()
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy