com.intel.analytics.bigdl.optim.DistriValidator.scala Maven / Gradle / Ivy
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.optim
import com.intel.analytics.bigdl._
import com.intel.analytics.bigdl.dataset.{DistributedDataSet, MiniBatch}
import com.intel.analytics.bigdl.optim.DistriValidator._
import com.intel.analytics.bigdl.utils.{Engine, MklBlas}
import org.apache.log4j.Logger
object DistriValidator {
val logger = Logger.getLogger(this.getClass)
}
/**
* Validate model on a distributed cluster.
*
* @param model model to be validated
* @param dataSet validation dataset
*/
class DistriValidator[T] private[optim](
model: Module[T],
dataSet: DistributedDataSet[MiniBatch[T]]
) extends Validator[T, MiniBatch[T]](model, dataSet) {
/**
* Applies vMethods to the model and validation dataset.
* @param vMethods
* @return
*/
override def test(vMethods: Array[ValidationMethod[T]])
: Array[(ValidationResult, ValidationMethod[T])] = {
val rdd = dataSet.data(train = false)
val broadcastModel = rdd.sparkContext.broadcast(model.evaluate(), vMethods)
val _subModelNumber = Engine.getEngineType match {
case MklBlas => Engine.coreNumber()
case _ => throw new IllegalArgumentException
}
val nExecutor = Engine.nodeNumber()
val executorCores = Engine.coreNumber()
rdd.mapPartitions(dataIter => {
Engine.setNodeAndCore(nExecutor, executorCores)
val localModel = broadcastModel.value._1
val localMethod = broadcastModel.value._2
logger.info("model thread pool size is " + Engine.model.getPoolSize)
val workingModels = (1 to _subModelNumber)
.map(_ => localModel.cloneModule().evaluate()).toArray
val vMethodsArr = (1 to _subModelNumber).map(i => localMethod.map(_.clone())).toArray
dataIter.map(batch => {
val stackSize = batch.size() / _subModelNumber
val extraSize = batch.size() % _subModelNumber
val parallelism = if (stackSize == 0) extraSize else _subModelNumber
Engine.default.invokeAndWait(
(0 until parallelism).map(b =>
() => {
val offset = b * stackSize + math.min(b, extraSize) + 1
val length = stackSize + (if (b < extraSize) 1 else 0)
val currentMiniBatch = batch.slice(offset, length)
val input = currentMiniBatch.getInput()
val target = currentMiniBatch.getTarget()
val output = workingModels(b).forward(input)
val validatMethods = vMethodsArr(b)
validatMethods.map(validation => {
validation(output, target)
})
}
)
).reduce((left, right) => {
left.zip(right).map { case (l, r) =>
l + r
}
})
})
}).reduce((left, right) => {
left.zip(right).map { case (l, r) =>
l + r
}
}).zip(vMethods)
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy