com.intel.analytics.bigdl.tensor.DenseTensorDimApply.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.tensor
object DenseTensorDimApply {
private[tensor] def dimApply2[@specialized(Float, Double) T](tensor1: DenseTensor[T],
tensor2: Tensor[T], _dim: Int, func: (Array[T], Int,
Int, Int, Array[T], Int, Int, Int) => Unit): Unit = {
require(_dim >= 0 && _dim < tensor1.nDimension, "invalid dimension")
require(tensor1.nDimension == tensor2.nDimension(), "inconsistent tensor sizes")
var i = 0
while (i < tensor1.nDimension) {
if (i != _dim) {
require(tensor1.size(i + 1) == tensor2.size(i + 1), "inconsistent tensor sizes")
}
i += 1
}
val counter = new Array[Int](tensor1.nDimension)
val _data1 = tensor1.storage().asInstanceOf[Storage[T]].array()
var _offset1 = tensor1.storageOffset() - 1
val stride1 = tensor1._stride(_dim)
val size1 = tensor1._size(_dim)
val _data2 = tensor2.storage().asInstanceOf[Storage[T]].array()
var _offset2 = tensor2.storageOffset() - 1
val stride2 = tensor2.stride(_dim + 1)
val size2 = tensor2.size(_dim + 1)
var hasFinished = false
while (!hasFinished) {
func(_data1, _offset1, stride1, size1,
_data2, _offset2, stride2, size2)
if (tensor1.nDimension == 1) {
hasFinished = true
} else {
var i = 0
var break = false
while (i < tensor1.nDimension && !break) {
if (i == _dim) {
if (i == tensor1.nDimension - 1) {
hasFinished = true
break = true
}
} else {
counter(i) += 1
_offset1 += tensor1.stride(i + 1)
_offset2 += tensor2.stride(i + 1)
if (counter(i) == tensor1.size(i + 1)) {
if (i == tensor1.nDimension - 1) {
break = true
hasFinished = true
} else {
_offset1 -= counter(i) * tensor1.stride(i + 1)
_offset2 -= counter(i) * tensor2.stride(i + 1)
counter(i) = 0
}
} else {
break = true
} // if (counter(i) == tensor1.size(i))
} // if (i == _dim) else
i += 1
} // while
} // if(tensor1.nDimension == 1)
} // while(!hasFinished)
}
private[tensor] def dimApply3[@specialized(Float, Double) T](tensor1: DenseTensor[T],
tensor2: Tensor[T], tensor3: Tensor[T], dim: Int,
func: (
Array[T], Int, Int, Int,
Array[T], Int, Int, Int,
Array[T], Int, Int, Int) => Unit): Unit = {
require(dim > 0 && dim <= tensor1.nDimension, "invalid dimension")
require(tensor1.nDimension == tensor2.nDimension, "inconsistent tensor sizes")
require(tensor2.nDimension == tensor3.nDimension, "inconsistent tensor sizes")
var d = 1
while (d <= tensor1.nDimension) {
if (d != dim) {
require(tensor1.size(d) == tensor2.size(d), "inconsistent tensor sizes")
require(tensor2.size(d) == tensor3.size(d), "inconsistent tensor sizes")
}
d += 1
}
val counter = new Array[Int](tensor1.nDimension)
// val _data1 = tensor1.storage().asInstanceOf[Storage[T]].array()
val _data1 = tensor1.storage().array()
var _offset1 = tensor1.storageOffset() - 1
val stride1 = tensor1.stride(dim)
val size1 = tensor1.size(dim)
val _data2 = tensor2.storage().array()
var _offset2 = tensor2.storageOffset() - 1
val stride2 = tensor2.stride(dim)
val size2 = tensor2.size(dim)
val _data3 = tensor3.storage().array()
var _offset3 = tensor3.storageOffset() - 1
val stride3 = tensor3.stride(dim)
val size3 = tensor3.size(dim)
var isFinished = false
while (!isFinished) {
func(_data1, _offset1, stride1, size1,
_data2, _offset2, stride2, size2,
_data3, _offset3, stride3, size3)
if (tensor1.nDimension == 1) {
isFinished = true
} else {
var d = 1
var isBreak = false
while (d <= tensor1.nDimension && !isBreak) {
if (d == dim) {
if (d == tensor1.nDimension) {
isFinished = true
isBreak = true
}
} else {
counter(d - 1) += 1
_offset1 += tensor1.stride(d)
_offset2 += tensor2.stride(d)
_offset3 += tensor3.stride(d)
if (counter(d - 1) == tensor1.size(d)) {
if (d == tensor1.nDimension) {
isFinished = true
isBreak = true
} else {
_offset1 -= counter(d - 1) * tensor1.stride(d)
_offset2 -= counter(d - 1) * tensor2.stride(d)
_offset3 -= counter(d - 1) * tensor3.stride(d)
counter(d - 1) = 0
}
} else {
isBreak = true
}
}
d += 1
}
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy