com.intel.analytics.bigdl.tensor.DenseTensorMath.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.tensor
import com.intel.analytics.bigdl.mkl.MKL
import com.intel.analytics.bigdl.tensor.TensorNumericMath._
import com.intel.analytics.bigdl.tensor.{DenseTensorApply => Apply}
import scala.reflect.ClassTag
object DenseTensorMath {
val taskSize: Int = System.getProperty("cpu.task.size", "250000").toInt
def mul[@specialized(Float, Double) T](self: DenseTensor[T], x: Tensor[T], value: T)
(implicit ev: TensorNumeric[T]): Tensor[T] = {
if (x != null) {
require(self.nElement() == x.nElement())
self.copy(x)
}
if (self.isContiguous()) {
ev.scal(self.nElement, value, self.storage().array(), self.storageOffset() - 1, 1)
} else {
val func = new TensorFunc2[T] {
override def apply(data: Array[T], index: Int): Unit = {
data(index) = ev.times(data(index), value)
}
}
Apply.apply1[T](self, func)
}
self
}
def cmul[@specialized T](self: DenseTensor[T], x: DenseTensor[T], y: DenseTensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
if (x.nElement() != y.nElement() && DenseTensor.canFastBroadcast(x, y)) {
require(self.nElement() == x.nElement(), "the self tensor nElement is not same as x" +
s"self(${self.nElement()}) x(${x.nElement()})")
// recursive cmul
var i = 0
while(i < x.size(1)) {
cmul(self.select(1, i + 1).asInstanceOf[DenseTensor[T]],
x.select(1, i + 1).asInstanceOf[DenseTensor[T]], y)
i += 1
}
} else if (x.nElement() != y.nElement() && DenseTensor.canFastBroadcast(y, x)) {
require(self.nElement() == y.nElement(), "the self tensor nElement is not same as y" +
s"self(${self.nElement()}) y(${y.nElement()})")
// recursive cmul
var i = 0
while(i < y.size(1)) {
cmul(self.select(1, i + 1).asInstanceOf[DenseTensor[T]], x,
y.select(1, i + 1).asInstanceOf[DenseTensor[T]])
i += 1
}
} else if (x.nElement() != y.nElement()) {
self.resizeAs(x).copy(x)
self.cmul(self.expandTensor(y))
} else {
require(self.nElement() == y.nElement(), s"element number doesn't match " +
s"self(${self.nElement()}) y(${y.nElement()}) x(${x.nElement()})")
if (self.isContiguous() && x.isContiguous() && y.isContiguous() && MKL.isMKLLoaded) {
ev.vMul(self.nElement(), x.storage().array(), x.storageOffset() - 1,
y.storage().array(), y.storageOffset() - 1, self.storage().array(), self.storageOffset()
- 1)
} else {
val func6 = new TensorFunc6[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int,
data3: Array[T], offset3: Int): Unit = {
data1(offset1) = ev.times(data2(offset2), data3(offset3))
}
}
val func4 = new TensorFunc4[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int): Unit = {
data1(offset1) = ev.times(data1(offset1), data2(offset2))
}
}
// For special case, we can use apply2 to instead of apply3
if (self == y) {
Apply.apply2(self, x, func4)
} else if (self == x) {
Apply.apply2(self, y, func4)
} else {
Apply.apply3[T](self, x, y, func6)
}
}
}
self
}
def cdiv[@specialized(Float, Double) T](self: DenseTensor[T], x: Tensor[T], y: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(self.nElement() == y.nElement() && self.nElement() == x.nElement(),
"element number doesn't match")
if (self.isContiguous() && y.isContiguous() && x.isContiguous() && MKL.isMKLLoaded) {
ev.vDiv(self.nElement(), x.storage().array(), x.storageOffset() - 1,
y.storage().array(), y.storageOffset() - 1, self.storage().array(), self.storageOffset()
- 1)
} else {
val func = new TensorFunc6[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int,
data3: Array[T], offset3: Int): Unit = {
data1(offset1) = ev.divide(data2(offset2), data3(offset3))
}
}
Apply.apply3[T](self, x, y, func)
}
self
}
def cadd[@specialized(Float, Double) T](
self: DenseTensor[T], x: Tensor[T], value: T, y: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(x != null && y.nElement() == x.nElement())
if (!self.eq(x) && !self.eq(y)) {
self.resizeAs(x).copy(x)
}
if (self.eq(x) && self.isContiguous() && y.isContiguous()) {
ev.axpy(y.nElement(), value, y.storage().array(), y.storageOffset() - 1, 1,
self.storage().array(), self.storageOffset() - 1, 1)
} else {
val func = new TensorFunc6[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int,
data3: Array[T], offset3: Int): Unit = {
data1(offset1) = ev.plus(data2(offset2), ev.times(value, data3(offset3)))
}
}
Apply.apply3[T](self, x, y, func)
}
self
}
def csub[@specialized(Float, Double) T]
(self: DenseTensor[T], x: Tensor[T], value: T, y: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(x != null && x.nElement() == y.nElement())
if(!self.eq(x)) {
self.resizeAs(x).copy(x)
}
if(self.eq(x) && self.isContiguous() && y.isContiguous()) {
ev.axpy(y.nElement(), value, y.storage().array(),
y.storageOffset() - 1, 1, self.storage().array(), self.storageOffset() - 1, 1)
} else {
val func2 = new TensorFunc4[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int): Unit =
{ data1(offset1) = ev.minus(data1(offset1), ev.times(value, data2(offset2))) }}
Apply.apply2[T](self, y, func2)
}
self
}
def add[@specialized(Float, Double) T: ClassTag](s: T, t: DenseTensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
val result = new DenseTensor[T]()
result.resizeAs(t)
result.copy(t)
val func = new TensorFunc2[T] {
override def apply(data: Array[T], index: Int): Unit = {
data(index) = ev.plus(data(index), s)
}
}
Apply.apply1[T](result, func)
result
}
def add[@specialized(Float, Double) T: ClassTag](self: DenseTensor[T], t: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
val result = new DenseTensor[T]()
result.resizeAs(self)
result.copy(self)
val n = result.nElement()
if (result.isContiguous() && t.isContiguous() && n == t.nElement()) {
ev.axpy(n, ev.fromType[Int](1), t.storage().array(), t.storageOffset() - 1, 1,
result.storage().array,
result.storageOffset() - 1, 1)
result
} else {
val func2 = new TensorFunc4[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int): Unit = {
data1(offset1) = ev.plus(data1(offset1), data2(offset2))
}
}
Apply.apply2[T](self, t, func2)
result
}
}
def sub[@specialized(Float, Double) T: ClassTag](s: T, t: DenseTensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
val result = new DenseTensor[T]()
result.resizeAs(t)
result.copy(t)
val func = new TensorFunc2[T] {
override def apply(data: Array[T], index: Int): Unit = {
data(index) = ev.minus(data(index), s)
}
}
Apply.apply1[T](result, func)
result
}
def sub[@specialized(Float, Double) T: ClassTag](self: DenseTensor[T], t: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
val result = new DenseTensor[T]()
result.resizeAs(self)
result.copy(self)
val func2 = new TensorFunc4[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int): Unit = {
data1(offset1) = ev.minus(data1(offset1), data2(offset2))
}
}
Apply.apply2[T](result, t, func2)
result
}
def neg[@specialized(Float, Double) T: ClassTag](self: DenseTensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
val result = new DenseTensor[T]()
result.resizeAs(self)
result.copy(self)
val func = new TensorFunc2[T] {
override def apply(data: Array[T], index: Int): Unit = {
data(index) = ev.negative(data(index))
}
}
Apply.apply1[T](result, func)
result
}
def divide[@specialized(Float, Double) T: ClassTag](s: T, t: DenseTensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
val result = new DenseTensor[T]()
result.resizeAs(t)
result.copy(t)
val func = new TensorFunc2[T] {
override def apply(data: Array[T], index: Int): Unit = {
data(index) = ev.divide(data(index), s)
}
}
Apply.apply1[T](result, func)
result
}
def divide[@specialized(Float, Double) T: ClassTag](self: DenseTensor[T], t: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
val result = new DenseTensor[T]()
result.resizeAs(self)
result.copy(self)
val func2 = new TensorFunc4[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int): Unit = {
data1(offset1) = ev.divide(data1(offset1), data2(offset2))
}
}
Apply.apply2[T](result, t, func2)
result
}
def mul[@specialized(Float, Double) T: ClassTag](s: T, t: DenseTensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
val result = new DenseTensor[T]()
result.resizeAs(t)
result.copy(t)
val func = new TensorFunc2[T] {
override def apply(data: Array[T], index: Int): Unit = {
data(index) = ev.times(data(index), s)
}
}
Apply.apply1[T](result, func)
result
}
def mul[@specialized(Float, Double) T: ClassTag](self: Tensor[T], t: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
if (self.nDimension() == 1 && t.nDimension() == 1) {
require(self.size(1) == t.size(1), "vector size not match")
val result = ev.dot(self.nElement(), self.storage().array(), self.storageOffset() - 1,
self.stride(1), t.storage().array(), t.storageOffset() - 1, t.stride(1))
new DenseTensor(new ArrayStorage(Array(result)))
} else if (self.nDimension() == 2 && t.nDimension() == 1) {
val result = new DenseTensor[T](self.size(1))
DenseTensorBLAS.gemv[T](ev.fromType[Int](1), self, t, ev.fromType[Int](0), result)
result
} else if (self.nDimension() == 2 && t.nDimension() == 2) {
val result = new DenseTensor[T](t.size(2), self.size(1)).t()
addmm[T](result, ev.fromType[Int](0), result, ev.fromType[Int](1), self, t)
result
} else {
throw new UnsupportedOperationException(s"multiplication between ${self.nDimension()}D and " +
s"${t.nDimension()}D not yet supported")
}
}
def pow[@specialized(Float, Double) T: ClassTag](self: DenseTensor[T], x: Tensor[T], n: T)
(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(self.nElement() == x.nElement())
if (MKL.isMKLLoaded && self.isContiguous() && x.isContiguous()) {
ev.vPowx(self.nElement(), x.storage().array(), x.storageOffset() - 1, n,
self.storage().array(), self.storageOffset() - 1)
} else {
val func = new TensorFunc4[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int): Unit = {
data1(offset1) = ev.pow(data2(offset2), n)
}
}
DenseTensorApply.apply2[T](self, x, func)
}
self
}
def exp[@specialized(Float, Double) T: ClassTag](self: DenseTensor[T], x: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
if (self.nElement() != x.nElement()) {
self.resizeAs(x)
}
if (MKL.isMKLLoaded && self.isContiguous() && x.isContiguous()) {
ev.vExp(self.nElement(), x.storage().array(), x.storageOffset() - 1,
self.storage().array(), self.storageOffset() - 1)
} else {
val func = new TensorFunc4[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int): Unit = {
data1(offset1) = ev.exp(data2(offset2))
}
}
DenseTensorApply.apply2[T](self, x, func)
}
self
}
def log[@specialized(Float, Double) T: ClassTag](self: DenseTensor[T], x: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(self.nElement() == x.nElement())
if (MKL.isMKLLoaded && self.isContiguous() && x.isContiguous()) {
ev.vLn(self.nElement(), x.storage().array(), x.storageOffset() - 1,
self.storage().array(), self.storageOffset() - 1)
} else {
val func = new TensorFunc4[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int): Unit = {
data1(offset1) = ev.log(data2(offset2))
}
}
DenseTensorApply.apply2[T](self, x, func)
}
self
}
def sqrt[@specialized(Float, Double) T: ClassTag](self: DenseTensor[T], x: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(self.nElement() == x.nElement())
if (MKL.isMKLLoaded && self.isContiguous() && x.isContiguous()) {
ev.vSqrt(self.nElement(), x.storage().array(), x.storageOffset() - 1,
self.storage().array(), self.storageOffset() - 1)
} else {
val func = new TensorFunc4[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int): Unit = {
data1(offset1) = ev.sqrt(data2(offset2))
}
}
DenseTensorApply.apply2[T](self, x, func)
}
self
}
def tanh[@specialized(Float, Double) T: ClassTag](self: DenseTensor[T], x: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(self.nElement() == x.nElement())
if (MKL.isMKLLoaded && self.isContiguous() && x.isContiguous()) {
ev.vTanh(self.nElement(), x.storage().array(), x.storageOffset() - 1,
self.storage().array(), self.storageOffset() - 1)
} else {
val func = new TensorFunc4[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int): Unit = {
data1(offset1) = ev.tanh(data2(offset2))
}
}
DenseTensorApply.apply2[T](self, x, func)
}
self
}
def log1p[@specialized(Float, Double) T: ClassTag](self: DenseTensor[T], x: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(self.nElement() == x.nElement())
if (MKL.isMKLLoaded && self.isContiguous() && x.isContiguous()) {
ev.vLog1p(self.nElement(), x.storage().array(), x.storageOffset() - 1,
self.storage().array(), self.storageOffset() - 1)
} else {
val func = new TensorFunc4[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int): Unit = {
data1(offset1) = ev.log1p(data2(offset2))
}
}
DenseTensorApply.apply2[T](self, x, func)
}
self
}
def prodAll[@specialized(Float, Double) T](self: DenseTensor[T])(
implicit ev: TensorNumeric[T]): T = {
var product = ev.fromType[Int](1)
val func = new TensorFunc2[T] {
override def apply(data: Array[T], index: Int): Unit = {
product = ev.times(data(index), product)
}
}
Apply.apply1[T](self, func)
product
}
def sumAll[@specialized(Float, Double) T](self: DenseTensor[T])(
implicit ev: TensorNumeric[T]): T = {
var sum = ev.fromType[Int](0)
val func = new TensorFunc2[T] {
override def apply(data: Array[T], index: Int): Unit = {
sum = ev.plus(data(index), sum)
}
}
Apply.apply1[T](self, func)
sum
}
def prod[@specialized(Float, Double) T: ClassTag](self: DenseTensor[T], x: Tensor[T], _dim: Int)
(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(_dim >= 0 && _dim < x.nDimension, s"dimension ${_dim + 1} out of range")
val result = if (self == null) new DenseTensor[T]() else self
val sizes = x.size()
sizes(_dim) = 1
result.resize(sizes)
DenseTensorDimApply.dimApply2[T](result, x, _dim,
(rData, rOffset, rStride, rSize, tData, tOffset, tStride, tSize) => {
rData(rOffset) = ev.prod(tSize, tData, tOffset, tStride)
})
result
}
def sum[@specialized T: ClassTag](self: DenseTensor[T], x: Tensor[T], _dim: Int)
(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(_dim >= 0 && _dim < x.nDimension, s"dimension ${_dim + 1} out of range")
val result = if (self == null) new DenseTensor[T]() else self
val sizes = x.size()
sizes(_dim) = 1
result.resize(sizes)
DenseTensorDimApply.dimApply2[T](result, x, _dim,
(rData, rOffset, rStride, rSize, tData, tOffset, tStride, tSize) => {
rData(rOffset) = ev.sum(tSize, tData, tOffset, tStride)
})
result
}
def maxAll[@specialized(Float, Double) T](self: DenseTensor[T])(
implicit ev: TensorNumeric[T]): T = {
var max = ev.fromType[Int](0)
var first = true
val func = new TensorFunc2[T] {
override def apply(data: Array[T], index: Int): Unit = {
if (first) {
first = false
max = data(index)
} else if (ev.isGreater(data(index), max)) {
max = data(index)
}
}
}
Apply.apply1[T](self, func)
max
}
def minAll[@specialized(Float, Double) T](self: DenseTensor[T])(
implicit ev: TensorNumeric[T]): T = {
var min = ev.fromType[Int](Int.MaxValue)
var first = true
val func = new TensorFunc2[T] {
override def apply(data: Array[T], index: Int): Unit = {
if (first) {
first = false
min = data(index)
} else if (ev.isGreater(min, data(index))) {
min = data(index)
}
}
}
Apply.apply1[T](self, func)
min
}
def addmm[@specialized(Float, Double) T: ClassTag](r: Tensor[T], beta: T, t: Tensor[T],
alpha: T, m1: Tensor[T], m2: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(m1.dim() == 2 && m2.dim() == 2,
s"matrices expected, got ${m1.dim()}, ${m2.dim()} tensors")
require(m1.size(2) == m2.size(1),
s"size mismatch, m1:${m1.size().mkString("x")} m2:${m2.size().mkString("x")}")
require(t.dim() == 2,
s"matrix expected, got ${t.dim()} tensor for t")
require(t.size(1) == m1.size(1) && t.size(2) == m2.size(2),
s"size mismatch. t:${t.size().mkString("x")}, " +
s"m1:${m1.size().mkString("x")} + m2:${m2.size().mkString("x")}")
if (r != t) {
r.resizeAs(t)
r.copy(t)
}
var _r: Tensor[T] = null
var _m1: Tensor[T] = m1
var _m2: Tensor[T] = m2
var transpose_r = ' '
if (r.stride(1) == 1 && r.stride(2) != 0) {
transpose_r = 'n'
_r = r
} else if (r.stride(2) == 1 && r.stride(1) != 0) {
val swap = _m2
_m2 = _m1
_m1 = swap
transpose_r = 't'
_r = r
} else {
transpose_r = 'n'
_r = new DenseTensor[T](r.size(2), r.size(1))
_r.copy(r)
_r = _r.transpose(1, 2)
}
val index1 = if (transpose_r == 'n') 1 else 2
val index2 = if (transpose_r == 'n') 2 else 1
var transpose_m1 = ' '
var __m1: Tensor[T] = null
if (_m1.stride(index1) == 1 && _m1.stride(index2) != 0) {
transpose_m1 = 'n'
__m1 = _m1
} else if (_m1.stride(index2) == 1 && _m1.stride(index1) != 0) {
transpose_m1 = 't'
__m1 = _m1
} else {
transpose_m1 = if (transpose_r == 'n') 't' else 'n'
__m1 = _m1.contiguous()
}
var transpose_m2 = ' '
var __m2: Tensor[T] = null
if (_m2.stride(index1) == 1 && _m2.stride(index2) != 0) {
transpose_m2 = 'n'
__m2 = _m2
} else if (_m2.stride(index2) == 1 && _m2.stride(index1) != 0) {
transpose_m2 = 't'
__m2 = _m2
} else {
transpose_m2 = if (transpose_r == 'n') 't' else 'n'
__m2 = _m2.contiguous()
}
DenseTensorBLAS.gemm[T](transpose_m1, transpose_m2, _r.size(index1), _r.size(index2),
__m1.size(index2), alpha, __m1.storage().array(), __m1.storageOffset() - 1,
if (transpose_m1 == 'n') __m1.stride(index2) else __m1.stride(index1),
__m2.storage().array(), __m2.storageOffset() - 1,
if (transpose_m2 == 'n') __m2.stride(index2) else __m2.stride(index1),
beta,
_r.storage().array(), _r.storageOffset() - 1,
_r.stride(index2)
)
if (_r != r) {
r.copy(_r)
}
r
}
def addr[@specialized(Float, Double) T](r: Tensor[T], beta: T, t: Tensor[T],
alpha: T, vec1: Tensor[T], vec2: Tensor[T])(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(vec1.dim() == 1 && vec2.dim() == 1)
require(t.dim() == 2)
require(t.size(1) == vec1.size(1) && t.size(2) == vec2.size(1))
if (!r.eq(t)) {
r.resizeAs(t).copy(t)
}
if (beta != 1) {
r.mul(beta)
}
if (r.stride(1) == 1) {
val lda = if (t.stride(2) == 1) {
r.size(1)
} else {
r.stride(2)
}
ev.ger(vec1.size(1), vec2.size(1), alpha, vec1.storage().array(), vec1.storageOffset() - 1,
vec1.stride(1), vec2.storage().array(), vec2.storageOffset() - 1, vec2.stride(1),
r.storage().array(), r.storageOffset() - 1, lda)
} else if (r.stride(2) == 1) {
ev.ger(vec2.size(1), vec1.size(1), alpha, vec2.storage().array(), vec2.storageOffset() - 1,
vec2.stride(1), vec1.storage().array(), vec1.storageOffset() - 1, vec1.stride(1),
r.storage().array(), r.storageOffset() - 1, r.stride(1))
} else {
val cr = r.contiguous()
ev.ger(vec2.size(1), vec1.size(1), alpha, vec2.storage().array(), vec2.storageOffset() - 1,
vec2.stride(1), vec1.storage().array(), vec1.storageOffset() - 1, vec1.stride(1),
cr.storage().array(), cr.storageOffset() - 1, cr.stride(1))
r.copy(cr)
}
r
}
def baddbmm[@specialized(Float, Double) T: ClassTag]
(result: Tensor[T], beta: T, M: Tensor[T], alpha: T, batch1: Tensor[T], batch2: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(batch1.dim() == 3, s"expected 3D tensor, got ${batch1.dim()}D")
require(batch2.dim() == 3, s"expected 3D tensor, got ${batch2.dim()}D")
require(batch1.size(1) == batch2.size(1), "equal number of batches expected, got " +
s"${batch1.size(1)}, ${batch2.size(1)}")
require(batch1.size(3) == batch2.size(2), s"wrong matrix size, batch1: " +
s"${batch1.size(2)}${batch1.size(3)}, batch2: " +
s"${batch2.size(2)}${batch2.size(3)}")
val bs = batch1.size(1)
val dim1 = batch1.size(2)
val dim2 = batch2.size(3)
require(M.size(1) == bs, "output tensor of incorrect size")
require(M.size(2) == dim1, "output tensor of incorrect size")
require(M.size(3) == dim2, "output tensor of incorrect size")
if (M != result) {
result
.resizeAs(M)
.copy(M)
}
var batch = 1
while (batch <= batch1.size(1)) {
val m1 = batch1.select(1, batch)
val m2 = batch2.select(1, batch)
val resultMatrix = result.select(1, batch)
addmm(resultMatrix, beta, resultMatrix, alpha, m1, m2)
batch += 1
}
result
}
def addmv[@specialized(Float, Double) T](r: Tensor[T], beta: T, t: Tensor[T], alpha: T,
mat: Tensor[T], vec: Tensor[T])(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(mat.nDimension() == 2 && vec.nDimension() == 1)
require(mat.size(2) == vec.size(1))
require(t.nDimension() == 1)
require(t.size(1) == mat.size(1), s"${t.size(1)} == ${mat.size(1)}")
if (!r.eq(t)) {
r.resizeAs(t).copy(t)
}
if (mat.stride(1) == 1) {
val lda = if (mat.size(2) == 1) {
mat.size(1)
} else {
mat.stride(2)
}
ev.gemv('N', mat.size(1), mat.size(2), alpha, mat.storage().array(), mat.storageOffset() - 1,
lda, vec.storage().array(), vec.storageOffset() - 1, vec.stride(1), beta,
r.storage().array(),
r.storageOffset() - 1, r.stride(1))
} else if (mat.stride(2) == 1) {
ev.gemv('T', mat.size(2), mat.size(1), alpha, mat.storage().array(), mat.storageOffset() - 1,
mat.stride(1), vec.storage().array(), vec.storageOffset() - 1, vec.stride(1), beta,
r.storage().array(), r.storageOffset() - 1, r.stride(1))
} else {
val cmat = mat.contiguous()
ev.gemv('T', cmat.size(2), cmat.size(1), alpha, cmat.storage().array(),
cmat.storageOffset() - 1, cmat.stride(1), vec.storage().array(), vec.storageOffset() - 1,
vec.stride(1), beta, r.storage().array(), r.storageOffset() - 1, r.stride(1))
}
r
}
def meanAll[@specialized(Float, Double) T](self: DenseTensor[T])(
implicit ev: TensorNumeric[T]): T = {
var sum = ev.fromType[Int](0)
val func = new TensorFunc2[T] {
override def apply(data: Array[T], index: Int): Unit = {
sum = ev.plus(data(index), sum)
}
}
Apply.apply1[T](self, func)
ev.divide(sum, ev.fromType[Int](self.nElement()))
}
def mean[@specialized(Float, Double) T: ClassTag](self: DenseTensor[T], _dim: Int)(
implicit ev: TensorNumeric[T]): Tensor[T] = {
require(_dim >= 0 && _dim < self.nDimension, s"dimension ${_dim + 1} out of range")
val result = new DenseTensor[T]()
val sizes = self.size()
sizes(_dim) = 1
DenseTensor.resize(result, sizes)
DenseTensorDimApply.dimApply2[T](result, self, _dim,
(rData, rOffset, rStride, rSize, tData, tOffset, tStride, tSize) => {
var sum = ev.fromType[Int](0)
var i = 0
while (i < tSize) {
sum = ev.plus(sum, tData(tOffset + i * tStride))
i += 1
}
rData(rOffset) = ev.divide(sum, ev.fromType[Int](self.size(_dim + 1)))
})
result
}
/**
* returns the p-norms of the Tensor x computed over the dimension dim.
*
* @param self
* @param value value-norms
* @param _dim the dimension dim
* @return
*/
def norm[@specialized(Float, Double) T: ClassTag](self: DenseTensor[T], result: Tensor[T],
value: Int, _dim: Int)(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(_dim >= 0 && _dim < self.nDimension, "invalid dimension")
val sizes = self.size()
sizes(_dim) = 1
result.resize(sizes)
if (value == 0) {
DenseTensorDimApply.dimApply2[T](self, result, _dim,
(rData, rOffset, rStride, rSize, tData, tOffset, tStride, tSize) => {
var sum = ev.fromType[Int](0)
var i = 0
while (i < rSize) {
sum = ev.plus(sum, rData(rOffset + i * rStride))
i += 1
}
tData(tOffset) = sum
})
} else {
DenseTensorDimApply.dimApply2[T](self, result, _dim,
(rData, rOffset, rStride, rSize, tData, tOffset, tStride, tSize) => {
var sum = ev.fromType[Int](0)
var i = 0
while (i < rSize) {
sum = ev.plus(sum, ev.pow(ev.abs(rData(rOffset + i * rStride)), ev.fromType(value)))
i += 1
}
tData(tOffset) = ev.pow(sum, ev.fromType(1.0 / value))
})
}
result
}
def nearlyEqual[@specialized(Float, Double) T](a: T, b: T, epsilon: Double)(
implicit ev: TensorNumeric[T]): Boolean = {
ev.nearlyEqual(a, b, epsilon)
}
def cmax[@specialized(Float, Double) T](self: DenseTensor[T], x: Tensor[T], y: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(self.nElement() == y.nElement() && self.nElement() == x.nElement(),
"element number doesn't match")
// todo: the performance of contiguous tensor should be optimized
val func = new TensorFunc6[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int,
data3: Array[T], offset3: Int): Unit = {
data1(offset1) = ev.max(data2(offset2), data3(offset3))
}
}
Apply.apply3[T](self, x, y, func)
self
}
def cmin[@specialized(Float, Double) T](self: DenseTensor[T], x: Tensor[T], y: Tensor[T])
(implicit ev: TensorNumeric[T]): Tensor[T] = {
require(self.nElement() == y.nElement() && self.nElement() == x.nElement(),
"element number doesn't match")
// todo: the performance of contiguous tensor should be optimized
val func = new TensorFunc6[T] {
override def apply(data1: Array[T], offset1: Int, data2: Array[T], offset2: Int,
data3: Array[T], offset3: Int): Unit = {
data1(offset1) = ev.min(data2(offset2), data3(offset3))
}
}
Apply.apply3[T](self, x, y, func)
self
}
val doubleEpsilon = System.getProperty("DoubleTensorEpsilon", "0.0000001").toDouble
val floatEpsilon = System.getProperty("FloatTensorEpsilon", "0.00001").toDouble
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy