com.intel.analytics.bigdl.dataset.image.BGRImgPixelNormalizer.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.dataset.image
import com.intel.analytics.bigdl.dataset.Transformer
import com.intel.analytics.bigdl.tensor.Tensor
object BGRImgPixelNormalizer {
def apply(means: Tensor[Float]): BGRImgPixelNormalizer
= new BGRImgPixelNormalizer(means)
}
/**
* Each pixel value of the input BGR Image sub the given mean value of the corresponding chanel
* @param means mean value of BGR
*/
class BGRImgPixelNormalizer(means: Tensor[Float])
extends Transformer[LabeledBGRImage, LabeledBGRImage] {
override def apply(prev: Iterator[LabeledBGRImage]): Iterator[LabeledBGRImage] = {
prev.map(img => {
val content = img.content
val meansData = means.storage().array()
require(content.length % 3 == 0)
require(content.length == means.nElement())
var i = 0
while (i < content.length) {
content(i + 2) = content(i + 2) - meansData(i + 2)
content(i + 1) = content(i + 1) - meansData(i + 1)
content(i + 0) = content(i + 0) - meansData(i + 0)
i += 3
}
img
})
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy