com.intel.analytics.bigdl.dataset.image.GreyImgNormalizer.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.dataset.image
import com.intel.analytics.bigdl.DataSet
import com.intel.analytics.bigdl.dataset.Transformer
import scala.collection.Iterator
object GreyImgNormalizer {
def apply(dataSet: DataSet[LabeledGreyImage], samples: Int = Int.MaxValue)
: GreyImgNormalizer = {
var sum: Double = 0
var total: Int = 0
dataSet.shuffle()
var iter = dataSet.toLocal().data(train = false)
var i = 0
while (i < math.min(samples, dataSet.size())) {
val img = iter.next()
img.content.foreach(e => {
sum += e
total += 1
})
i += 1
}
val mean = sum / total
sum = 0
i = 0
iter = dataSet.toLocal().data(train = false)
while (i < math.min(samples, dataSet.size())) {
val img = iter.next()
img.content.foreach(e => {
val diff = e - mean
sum += diff * diff
})
i += 1
}
val std = math.sqrt(sum / total).toFloat
new GreyImgNormalizer(mean, std)
}
def apply(mean : Double, std : Double): GreyImgNormalizer = {
new GreyImgNormalizer(mean, std)
}
}
/**
* Normalize a grey image. Each pixel will minus mean and then divide std.
* @param mean
* @param std
*/
class GreyImgNormalizer(mean : Double, std : Double)
extends Transformer[LabeledGreyImage, LabeledGreyImage] {
def getMean(): Double = mean
def getStd(): Double = std
override def apply(prev: Iterator[LabeledGreyImage]): Iterator[LabeledGreyImage] = {
prev.map(img => {
var i = 0
val content = img.content
while (i < content.length) {
content(i) = ((content(i) - mean) / std).toFloat
i += 1
}
img
})
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy