com.intel.analytics.bigdl.dataset.image.GreyImgToBatch.scala Maven / Gradle / Ivy
The newest version!
/*
* Copyright 2016 The BigDL Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.intel.analytics.bigdl.dataset.image
import com.intel.analytics.bigdl.dataset.{Utils, MiniBatch, Transformer}
import com.intel.analytics.bigdl.tensor.{Storage, Tensor}
import scala.collection.Iterator
object GreyImgToBatch {
def apply(batchSize : Int) : GreyImgToBatch = {
new GreyImgToBatch(batchSize)
}
}
/**
* Convert a batch of labeled grey images into a Mini-batch.
*
* Notice: The totalBatch means a total batch size. In distributed environment, the batch should be
* divided by total core number
* @param totalBatchSize
*/
class GreyImgToBatch private[dataset](totalBatchSize: Int)
extends Transformer[LabeledGreyImage, MiniBatch[Float]] {
private def copyImage(img: GreyImage, storage: Array[Float], offset: Int): Unit = {
val content = img.content
val frameLength = img.width() * img.height()
var j = 0
while (j < frameLength) {
storage(offset + j) = content(j)
j += 1
}
}
private val batchPerCore = Utils.getBatchSize(totalBatchSize)
override def apply(prev: Iterator[LabeledGreyImage]): Iterator[MiniBatch[Float]] = {
val batchSizePerCore = batchPerCore
new Iterator[MiniBatch[Float]] {
private val featureTensor: Tensor[Float] = Tensor[Float]()
private val labelTensor: Tensor[Float] = Tensor[Float]()
private var featureData: Array[Float] = null
private var labelData: Array[Float] = null
private val batchSize = batchSizePerCore
private var width = 0
private var height = 0
override def hasNext: Boolean = prev.hasNext
override def next(): MiniBatch[Float] = {
if (prev.hasNext) {
var i = 0
while (i < batchSize && prev.hasNext) {
val img = prev.next()
if (featureData == null) {
featureData = new Array[Float](batchSize * img.height() * img.width())
labelData = new Array[Float](batchSize)
height = img.height()
width = img.width()
}
copyImage(img, featureData, i * img.width() * img.height())
labelData(i) = img.label()
i += 1
}
if (labelTensor.nElement() != i) {
featureTensor.set(Storage[Float](featureData),
storageOffset = 1, sizes = Array(i, height, width))
labelTensor.set(Storage[Float](labelData),
storageOffset = 1, sizes = Array(i))
}
MiniBatch(featureTensor, labelTensor)
} else {
null
}
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy