All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.intel.analytics.bigdl.dataset.text.LabeledSentenceToSample.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2016 The BigDL Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.intel.analytics.bigdl.dataset.text

import com.intel.analytics.bigdl.dataset.{Sample, Transformer}

import scala.collection.Iterator
import java.util

import com.intel.analytics.bigdl.tensor.{DoubleType, FloatType, Tensor}
import com.intel.analytics.bigdl.tensor.TensorNumericMath.TensorNumeric

import scala.reflect.ClassTag

object LabeledSentenceToSample {
  def apply[T: ClassTag]
  (vocabLength: Int,
   fixDataLength: Option[Int] = None,
   fixLabelLength: Option[Int] = None)
  (implicit ev: TensorNumeric[T])
  : LabeledSentenceToSample[T] =
    new LabeledSentenceToSample[T](
      vocabLength,
      fixDataLength,
      fixLabelLength,
      true)
  def apply[T: ClassTag]
  (oneHot: Boolean,
   fixDataLength: Option[Int],
   fixLabelLength: Option[Int])
  (implicit ev: TensorNumeric[T])
  : LabeledSentenceToSample[T] =
    new LabeledSentenceToSample[T](
      vocabLength = 0,
      fixDataLength,
      fixLabelLength,
      oneHot)
}

/**
 * if oneHot = true:
 * Transform labeled sentences to one-hot format samples
 * e.g. sentence._data: [0, 2, 3]
 *      sentence._label: [2, 3, 1]
 *      vocabLength: 4
 *      => input: [[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]
 *         target: [3, 4, 2]
 *
 * else:
 * The model will use LookupTable for word embedding.
 *      => input: [1, 2, 3]
 *      => label: [2, 3, 4]
 * The input is an iterator of LabeledSentence class
 * The output is an iterator of Sample class
 *
 * @param vocabLength length of dictionary
 * @param fixDataLength optional parameter for fixed length of input data
 * @param fixLabelLength optional parameter for fixed length of labels
 */
class LabeledSentenceToSample[T: ClassTag](
  vocabLength: Int,
  fixDataLength: Option[Int],
  fixLabelLength: Option[Int],
  oneHot: Boolean = true)(implicit ev: TensorNumeric[T])
  extends Transformer[LabeledSentence[T], Sample[T]] {

  private val feature: Tensor[T] = Tensor()
  private val label: Tensor[T] = Tensor()

  override def apply(prev: Iterator[LabeledSentence[T]]): Iterator[Sample[T]] = {
    prev.map(sentence => {

      val dataLength = fixDataLength.getOrElse(sentence.dataLength())
      val labelLength = fixLabelLength.getOrElse(sentence.labelLength())

      if (oneHot) {
        // initialize featureBuffer
        feature.resize(dataLength, vocabLength)
        feature.zero()
        label.resize(labelLength)
        label.zero()

        val featureBuffer = feature.storage().array()
        val labelBuffer = label.storage().array()

        /* One-Hot format for feature
       * Expected transformed format should be:
       *
       * Example1: Input = [0, 2, 3], label = [2, 3, 1], dictionary length = 4
       * Transformed: Input = [[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]
       * Transformed: label = [3, 4, 2] (+1 because Tensor index starts from 1)
       *
       * Example2: Input = [0, 2, 3], label = [0], dictionary length = 4
       * Transformed: Input = [[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]
       * Transformed: label = [1] (+1 because Tensor index starts from 1)
       */


        val startTokenIndex = sentence.getData(0)
        val endTokenIndex = if (labelLength == 1) 0
          else ev.toType[Int](sentence.getLabel(sentence.labelLength - 1))

        var i = 0
        while (i < sentence.dataLength) {
          featureBuffer(i * vocabLength + ev.toType[Int](sentence.getData(i)))
            = ev.fromType[Float](1.0f)
          i += 1
        }
        while (i < dataLength) {
          featureBuffer(i * vocabLength + endTokenIndex) = ev.fromType[Float](1.0f)
          i += 1
        }

        i = 0
        while (i < sentence.labelLength) {
          labelBuffer(i) = ev.plus(sentence.label()(i), ev.fromType[Float](1.0f))
          i += 1
        }
        while (i < labelLength) {
          labelBuffer(i) = ev.plus(startTokenIndex, ev.fromType[Float](1.0f))
          i += 1
        }
      } else {
        feature.resize(dataLength).zero
        label.resize(labelLength).zero

        val featureBuffer = feature.storage().array()
        val labelBuffer = label.storage().array()

        Array.copy(sentence.data, 0, featureBuffer, 0, dataLength)
        Array.copy(sentence.label, 0, labelBuffer, 0, labelLength)
      }
      Sample[T](feature, label)
    })
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy